Learning to Detect A Salient Object

Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, N. Zheng, Xiaoou Tang, H. Shum
{"title":"Learning to Detect A Salient Object","authors":"Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, N. Zheng, Xiaoou Tang, H. Shum","doi":"10.1109/cvpr.2007.383047","DOIUrl":null,"url":null,"abstract":"We study visual attention by detecting a salient object in an input image. We formulate salient object detection as an image segmentation problem, where we separate the salient object from the image background. We propose a set of novel features including multi-scale contrast, center-surround histogram, and color spatial distribution to describe a salient object locally, regionally, and globally. A conditional random field is learned to effectively combine these features for salient object detection. We also constructed a large image database containing tens of thousands of carefully labeled images by multiple users. To our knowledge, it is the first large image database for quantitative evaluation of visual attention algorithms. We validate our approach on this image database, which is public available with this paper.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"760 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2578","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr.2007.383047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2578

Abstract

We study visual attention by detecting a salient object in an input image. We formulate salient object detection as an image segmentation problem, where we separate the salient object from the image background. We propose a set of novel features including multi-scale contrast, center-surround histogram, and color spatial distribution to describe a salient object locally, regionally, and globally. A conditional random field is learned to effectively combine these features for salient object detection. We also constructed a large image database containing tens of thousands of carefully labeled images by multiple users. To our knowledge, it is the first large image database for quantitative evaluation of visual attention algorithms. We validate our approach on this image database, which is public available with this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习发现一个突出的物体
我们通过检测输入图像中的显著物体来研究视觉注意。我们将显著目标检测作为图像分割问题,将显著目标从图像背景中分离出来。我们提出了一套新的特征,包括多尺度对比度、中心环绕直方图和颜色空间分布来描述局部、区域和全局的显著目标。学习一个条件随机场来有效地结合这些特征进行显著目标检测。我们还构建了一个大型图像数据库,其中包含成千上万张由多个用户精心标记的图像。据我们所知,这是第一个用于视觉注意算法定量评估的大型图像数据库。我们在此图像数据库上验证了我们的方法,该数据库与本文一起公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1