Three-level binary tree structure for sentiment classification in Arabic text

H. A. Addi, R. Ezzahir, A. Mahmoudi
{"title":"Three-level binary tree structure for sentiment classification in Arabic text","authors":"H. A. Addi, R. Ezzahir, A. Mahmoudi","doi":"10.1145/3386723.3387844","DOIUrl":null,"url":null,"abstract":"The advent of web 2.0 platforms allowed users to generate and share textual content. This results in an explosive increase of online personal opinion. Sentiment Analysis, which is a recent field of Natural Language Processing, aims to predict the orientation of sentiment present on this massive textual data. This plays a vital role in many applications, such as recommender systems, customer intelligence, information retrieval and psychological study of crowd. Most existing approaches in sentiment analysis trait only positive, negative and neutral classes, ignoring the class strength (weak or strong positive/negative). In this paper, we propose an innovative approach for multi-class hierarchical sentiment classification in Arabic text based on a three-level binary tree structure. Experimental results show that our approach gives significant improvements over other classification methods.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The advent of web 2.0 platforms allowed users to generate and share textual content. This results in an explosive increase of online personal opinion. Sentiment Analysis, which is a recent field of Natural Language Processing, aims to predict the orientation of sentiment present on this massive textual data. This plays a vital role in many applications, such as recommender systems, customer intelligence, information retrieval and psychological study of crowd. Most existing approaches in sentiment analysis trait only positive, negative and neutral classes, ignoring the class strength (weak or strong positive/negative). In this paper, we propose an innovative approach for multi-class hierarchical sentiment classification in Arabic text based on a three-level binary tree structure. Experimental results show that our approach gives significant improvements over other classification methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向阿拉伯语文本情感分类的三层二叉树结构
web 2.0平台的出现允许用户生成和共享文本内容。这导致了网上个人意见的爆炸性增长。情感分析是自然语言处理的一个新领域,旨在预测大量文本数据中存在的情感取向。这在推荐系统、客户智能、信息检索和人群心理研究等许多应用中起着至关重要的作用。大多数现有的情感分析方法只表征积极、消极和中性的类别,而忽略了类别强度(弱或强的积极/消极)。本文提出了一种基于三层二叉树结构的阿拉伯语文本多类分层情感分类方法。实验结果表明,该方法与其他分类方法相比有明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1