Analysis and predicting electricity energy consumption using data mining techniques — A case study I.R. Iran — Mazandaran province

Noorollah Karimtabar, Sadegh Pasban, S. Alipour
{"title":"Analysis and predicting electricity energy consumption using data mining techniques — A case study I.R. Iran — Mazandaran province","authors":"Noorollah Karimtabar, Sadegh Pasban, S. Alipour","doi":"10.1109/PRIA.2015.7161634","DOIUrl":null,"url":null,"abstract":"The electricity consumption forecast is especially important with regard to policy making in developing countries. In this paper, the electricity consumption rate is predicted using the data mining techniques. The datasets that were collected for predicting the electricity consumption are related to Islamic Republic of Iran - Mazandaran province pertaining to the years 1991 to 2013. The research objective is analyzing the electricity consumption rate in recent years and predicting future consumption. According to a study the electricity consumption growth rate between the years 2006 to 2013 and the years 1999 to 2006 equaled 28.41 and 73.53, respectively. The results of the research conducted using the regression model indicate a 2.48 relative error. The output of this prediction shows that the total electricity consumption rate increases about 3.2% annually on average and will reach 7076796 megawatts by the year 2020 that shows a 22.28% growth comparing to the year 2013.","PeriodicalId":163817,"journal":{"name":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"18 797 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2015.7161634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The electricity consumption forecast is especially important with regard to policy making in developing countries. In this paper, the electricity consumption rate is predicted using the data mining techniques. The datasets that were collected for predicting the electricity consumption are related to Islamic Republic of Iran - Mazandaran province pertaining to the years 1991 to 2013. The research objective is analyzing the electricity consumption rate in recent years and predicting future consumption. According to a study the electricity consumption growth rate between the years 2006 to 2013 and the years 1999 to 2006 equaled 28.41 and 73.53, respectively. The results of the research conducted using the regression model indicate a 2.48 relative error. The output of this prediction shows that the total electricity consumption rate increases about 3.2% annually on average and will reach 7076796 megawatts by the year 2020 that shows a 22.28% growth comparing to the year 2013.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用数据挖掘技术分析和预测电力能源消耗-以伊朗马赞达兰省为例
电力消费预测对发展中国家的政策制定尤其重要。本文采用数据挖掘技术对电力消耗率进行预测。为预测电力消耗而收集的数据集与1991年至2013年伊朗伊斯兰共和国马赞达兰省有关。研究的目的是分析近年来的用电量,预测未来的用电量。根据一项研究,2006年至2013年和1999年至2006年的用电量增长率分别为28.41和73.53。使用回归模型进行的研究结果表明,相对误差为2.48。这一预测的输出表明,总用电量平均每年增长3.2%左右,到2020年将达到7076796兆瓦,比2013年增长22.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retinal vessel segmentation using system fuzzy and DBSCAN algorithm A new robust semi-blind image watermarking based on block classification and visual cryptography A binary-segmentation algorithm based on shearlet transform and eigenvectors CGSR features: Toward RGB-D image matching using color gradient description of geometrically stable regions Facial expression recognition using high order directional derivative local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1