A neural network-based passive sonar detection and classification design with a low false alarm rate

F.L. Casselman, D.F. Freeman, D.A. Kerrigan, S.E. Lane, N. Millstrom, W.G. Nichols
{"title":"A neural network-based passive sonar detection and classification design with a low false alarm rate","authors":"F.L. Casselman, D.F. Freeman, D.A. Kerrigan, S.E. Lane, N. Millstrom, W.G. Nichols","doi":"10.1109/ICNN.1991.163326","DOIUrl":null,"url":null,"abstract":"The Standard Transient Data Set (STDS) Phase 1 data were used to design detection and classification algorithms. Two separate processing chains were constructed, using neural networks for the short-duration transients and conventional processing for tonals. The design activity emphasized the judicious matching of acoustic digital signal processing (DSP) and neural networks, plus the construction of optimized training sets. The resulting design achieved 92% correct classification of the events in the testing files (204 correct out of 221 total events), with only four false alarms in approximately 35 min of data.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Standard Transient Data Set (STDS) Phase 1 data were used to design detection and classification algorithms. Two separate processing chains were constructed, using neural networks for the short-duration transients and conventional processing for tonals. The design activity emphasized the judicious matching of acoustic digital signal processing (DSP) and neural networks, plus the construction of optimized training sets. The resulting design achieved 92% correct classification of the events in the testing files (204 correct out of 221 total events), with only four false alarms in approximately 35 min of data.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的低虚警率被动声呐探测分类设计
使用标准瞬态数据集(STDS)第一阶段数据设计检测和分类算法。构建了两个独立的处理链,使用神经网络处理短时间瞬态,使用常规处理音调。设计活动强调了声学数字信号处理(DSP)与神经网络的合理匹配,以及优化训练集的构建。最终的设计在测试文件中实现了92%的事件正确分类(221个事件中有204个正确),在大约35分钟的数据中只有4个假警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of neural network and conventional techniques for sonar signal discrimination The potential of a neural network based sonar system in classifying fish Neural network for underwater target detection Design of an intelligent control system for remotely operated vehicles All neural network sonar discrimination system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1