Facial expression recognition based on a weighted Local Binary Pattern

M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae
{"title":"Facial expression recognition based on a weighted Local Binary Pattern","authors":"M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae","doi":"10.1109/ICCITECHN.2010.5723877","DOIUrl":null,"url":null,"abstract":"We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权局部二值模式的面部表情识别
提出了一种面部表情识别方法,该方法在局部二值模式(Local Binary Pattern, LBP)中加入权重,生成实体表情特征。此外,我们使用Adaboost选择一小部分显著特征,并将其用于支持向量机(SVM)对面部表情进行有效分类。实验结果表明,我们的方法在准确性和复杂性方面都优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bivariate gamma distribution: A plausible solution for joint distribution of packet arrival and their sizes On the design of quaternary comparators Optimization technique for configuring IEEE 802.11b access point parameters to improve VoIP performance A multidimensional partitioning scheme for developing English to Bangla dictionary A context free grammar and its predictive parser for bangla grammar recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1