Amar V. Krishna, S. Chandar, Rahul S. Bama, A. Roy
{"title":"Novel Interactive Visual Task for Robot-Assisted Gait Training for Stroke Rehabilitation","authors":"Amar V. Krishna, S. Chandar, Rahul S. Bama, A. Roy","doi":"10.1109/BIOROB.2018.8487654","DOIUrl":null,"url":null,"abstract":"In this paper, we present an interactive visual task for robot-assisted gait training after stroke. This stand-alone game is interfaced with the impedance controlled modular ankle exoskeleton (“Anklebot”) that provides support only as needed to enhance ankle neuro-motor control in the context of treadmill walking. The interactive task is designed as a simple soccer-based computer video-game such that movement of the game cursor (soccer ball) towards the goal is determined by a patient's volitional ankle torque. Here, we present the design and features of this interactive video game, as well as the underlying biomechanical model that relates patient-to-game performance. Additionally, we embed simple Statistical analysis algorithms to auto-adjust game parameters in real-time based on patient performance for patient motivation. Finally, we present preliminary test results from a stroke subject trials to validate the video-game performance and its feasibility for clinical use.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present an interactive visual task for robot-assisted gait training after stroke. This stand-alone game is interfaced with the impedance controlled modular ankle exoskeleton (“Anklebot”) that provides support only as needed to enhance ankle neuro-motor control in the context of treadmill walking. The interactive task is designed as a simple soccer-based computer video-game such that movement of the game cursor (soccer ball) towards the goal is determined by a patient's volitional ankle torque. Here, we present the design and features of this interactive video game, as well as the underlying biomechanical model that relates patient-to-game performance. Additionally, we embed simple Statistical analysis algorithms to auto-adjust game parameters in real-time based on patient performance for patient motivation. Finally, we present preliminary test results from a stroke subject trials to validate the video-game performance and its feasibility for clinical use.