Semi-Supervised Log-Based Anomaly Detection via Probabilistic Label Estimation

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, Wenbin Zhang
{"title":"Semi-Supervised Log-Based Anomaly Detection via Probabilistic Label Estimation","authors":"Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, Wenbin Zhang","doi":"10.1109/ICSE43902.2021.00130","DOIUrl":null,"url":null,"abstract":"With the growth of software systems, logs have become an important data to aid system maintenance. Log-based anomaly detection is one of the most important methods for such purpose, which aims to automatically detect system anomalies via log analysis. However, existing log-based anomaly detection approaches still suffer from practical issues due to either depending on a large amount of manually labeled training data (supervised approaches) or unsatisfactory performance without learning the knowledge on historical anomalies (unsupervised and semi-supervised approaches). In this paper, we propose a novel practical log-based anomaly detection approach, PLELog, which is semi-supervised to get rid of time-consuming manual labeling and incorporates the knowledge on historical anomalies via probabilistic label estimation to bring supervised approaches' superiority into play. In addition, PLELog is able to stay immune to unstable log data via semantic embedding and detect anomalies efficiently and effectively by designing an attention-based GRU neural network. We evaluated PLELog on two most widely-used public datasets, and the results demonstrate the effectiveness of PLELog, significantly outperforming the compared approaches with an average of 181.6% improvement in terms of F1-score. In particular, PLELog has been applied to two real-world systems from our university and a large corporation, further demonstrating its practicability","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

With the growth of software systems, logs have become an important data to aid system maintenance. Log-based anomaly detection is one of the most important methods for such purpose, which aims to automatically detect system anomalies via log analysis. However, existing log-based anomaly detection approaches still suffer from practical issues due to either depending on a large amount of manually labeled training data (supervised approaches) or unsatisfactory performance without learning the knowledge on historical anomalies (unsupervised and semi-supervised approaches). In this paper, we propose a novel practical log-based anomaly detection approach, PLELog, which is semi-supervised to get rid of time-consuming manual labeling and incorporates the knowledge on historical anomalies via probabilistic label estimation to bring supervised approaches' superiority into play. In addition, PLELog is able to stay immune to unstable log data via semantic embedding and detect anomalies efficiently and effectively by designing an attention-based GRU neural network. We evaluated PLELog on two most widely-used public datasets, and the results demonstrate the effectiveness of PLELog, significantly outperforming the compared approaches with an average of 181.6% improvement in terms of F1-score. In particular, PLELog has been applied to two real-world systems from our university and a large corporation, further demonstrating its practicability
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率标签估计的半监督日志异常检测
随着软件系统的发展,日志已经成为辅助系统维护的重要数据。基于日志的异常检测是其中最重要的方法之一,它旨在通过日志分析自动检测系统异常。然而,现有的基于日志的异常检测方法仍然存在一些实际问题,要么依赖于大量人工标记的训练数据(监督方法),要么没有学习历史异常的知识(无监督和半监督方法),性能不理想。在本文中,我们提出了一种新的实用的基于日志的异常检测方法——PLELog,该方法是半监督的,以摆脱耗时的人工标记,并通过概率标签估计结合历史异常的知识,以发挥监督方法的优势。此外,PLELog能够通过语义嵌入对不稳定的日志数据保持免疫,并通过设计基于注意力的GRU神经网络高效地检测异常。我们在两个最广泛使用的公共数据集上对PLELog进行了评估,结果证明了PLELog的有效性,在f1得分方面平均提高了181.6%。特别地,PLELog应用于我校和一家大型企业的两个实际系统,进一步证明了它的实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuDelta: Delta-Oriented Mutation Testing at Commit Time Verifying Determinism in Sequential Programs Data-Oriented Differential Testing of Object-Relational Mapping Systems IoT Bugs and Development Challenges Onboarding vs. Diversity, Productivity and Quality — Empirical Study of the OpenStack Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1