Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for Stock Prices Forecasting to Bank of Palestine

Shady I. Altelbany, Anwar A. Abualhussein
{"title":"Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for Stock Prices Forecasting to Bank of Palestine","authors":"Shady I. Altelbany, Anwar A. Abualhussein","doi":"10.52113/6/2021-11/8-28","DOIUrl":null,"url":null,"abstract":"This study aimed to Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for the time series data of a monthly Stock Prices to Bank of Palestine from Nov. 2005 to Oct. 2020, and comparing between models to see which one is better in forecasting. The results of applying the methods were compared through the (MAPE, MAE, RMSE), the most accurate model is ERNN 14-25-1 with minimum forecast measure error.","PeriodicalId":426963,"journal":{"name":"Muthanna Journal of Administrative and Economic Sciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muthanna Journal of Administrative and Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52113/6/2021-11/8-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study aimed to Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for the time series data of a monthly Stock Prices to Bank of Palestine from Nov. 2005 to Oct. 2020, and comparing between models to see which one is better in forecasting. The results of applying the methods were compared through the (MAPE, MAE, RMSE), the most accurate model is ERNN 14-25-1 with minimum forecast measure error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络(MLP、RBFNN、ERNN、JRNN)模型在巴勒斯坦银行股价预测中的性能比较
本研究旨在比较神经网络(MLP、RBFNN、ERNN、JRNN)模型对2005年11月至2020年10月巴勒斯坦银行每月股票价格的时间序列数据的性能,并比较模型之间的预测效果。通过(MAPE、MAE、RMSE)对应用方法的结果进行比较,预测精度最高的模型是ERNN 14-25-1,预报测量误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of the Iraqi Stock Market on the Growth of Real Sectors in the Iraqi Economy for the Period (1992-2020) The Relationship between Organizational Cynicism and Proactive Performance: the Interactive Role of Moral Disengagement The Structure of Public Revenues and Their Impact on the Public Budget Using the Self-Distributed Deceleration Model (ARDL) The Relationship Between Financial Leverage and Profitability Indicators Analytical Study: for a Sample of Iraqi Industrial Companies for the Period From 2014-2018)) The Role of Bank Credit in Achieving Efficiency, Justice and Prosperity Rafidain Bank as a Model for the Period (2008-2020)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1