Robust vocabulary independent keyword spotting with graphical models

M. Wöllmer, F. Eyben, Björn Schuller, G. Rigoll
{"title":"Robust vocabulary independent keyword spotting with graphical models","authors":"M. Wöllmer, F. Eyben, Björn Schuller, G. Rigoll","doi":"10.1109/ASRU.2009.5373544","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel graphical model architecture for robust and vocabulary independent keyword spotting which does not require the training of an explicit garbage model. We show how a graphical model structure for phoneme recognition can be extended to a keyword spotter that is robust with respect to phoneme recognition errors. We use a hidden garbage variable together with the concept of switching parents to model keywords as well as arbitrary speech. This implies that keywords can be added to the vocabulary without having to re-train the model. Thereby the design of our model architecture is optimised to reliably detect keywords rather than to decode keyword phoneme sequences as arbitrary speech, while offering a parameter to adjust the operating point on the receiver operating characteristics curve. Experiments on the TIMIT corpus reveal that our graphical model outperforms a comparable hidden Markov model based keyword spotter that uses conventional garbage modelling.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper introduces a novel graphical model architecture for robust and vocabulary independent keyword spotting which does not require the training of an explicit garbage model. We show how a graphical model structure for phoneme recognition can be extended to a keyword spotter that is robust with respect to phoneme recognition errors. We use a hidden garbage variable together with the concept of switching parents to model keywords as well as arbitrary speech. This implies that keywords can be added to the vocabulary without having to re-train the model. Thereby the design of our model architecture is optimised to reliably detect keywords rather than to decode keyword phoneme sequences as arbitrary speech, while offering a parameter to adjust the operating point on the receiver operating characteristics curve. Experiments on the TIMIT corpus reveal that our graphical model outperforms a comparable hidden Markov model based keyword spotter that uses conventional garbage modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有图形模型的鲁棒词汇独立关键字发现
本文介绍了一种新的图形模型体系结构,用于鲁棒和词汇无关的关键字识别,不需要训练显式垃圾模型。我们展示了如何将音素识别的图形模型结构扩展到一个对音素识别错误具有鲁棒性的关键字识别器。我们使用了一个隐藏的垃圾变量以及将父变量转换为模型关键字和任意语音的概念。这意味着可以将关键字添加到词汇表中,而不必重新训练模型。从而优化了我们的模型架构设计,以可靠地检测关键字,而不是将关键字音素序列解码为任意语音,同时提供了一个参数来调整接收机工作特性曲线上的工作点。在TIMIT语料库上的实验表明,我们的图形模型优于使用传统垃圾建模的基于隐马尔可夫模型的关键字识别器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1