Finding Genetic network using Graphical Gaussian Model

Abhishek Bag, Bandana Barman, Goutam Saha
{"title":"Finding Genetic network using Graphical Gaussian Model","authors":"Abhishek Bag, Bandana Barman, Goutam Saha","doi":"10.1109/ICIINFS.2008.4798365","DOIUrl":null,"url":null,"abstract":"The paper proposes a simple method for constructing gene regulatory network from the microarray gene expression time series data set of `Burkholderia Pseudomalli' at various phases of growth in vitro. This has been collected from GEO data base of NCBI web-site (a genetic time series data consists of 5289 genes & 48 samples). These microarray data set represents the external manifestation of internal genetic network manipulation (as seen from central dogma). Discovering the hidden genetic network from microarray data is the prime objective of this paper. Since the number of data is huge, here first the microarray data set has been clustered into 135 clusters using k-mean clustering algorithm. This represents important information sets where each cluster is considered to contain gene set of similar expression level. The genetic network has been constructed using graphical Gaussian model i.e. GGM amongst the clusters. Thus network developed will help in detecting the culprit gene set, which will ultimately lead to `drug discovery'.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a simple method for constructing gene regulatory network from the microarray gene expression time series data set of `Burkholderia Pseudomalli' at various phases of growth in vitro. This has been collected from GEO data base of NCBI web-site (a genetic time series data consists of 5289 genes & 48 samples). These microarray data set represents the external manifestation of internal genetic network manipulation (as seen from central dogma). Discovering the hidden genetic network from microarray data is the prime objective of this paper. Since the number of data is huge, here first the microarray data set has been clustered into 135 clusters using k-mean clustering algorithm. This represents important information sets where each cluster is considered to contain gene set of similar expression level. The genetic network has been constructed using graphical Gaussian model i.e. GGM amongst the clusters. Thus network developed will help in detecting the culprit gene set, which will ultimately lead to `drug discovery'.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用图形高斯模型寻找遗传网络
本文提出了一种利用假马氏伯克氏菌(Burkholderia Pseudomalli)在体外不同生长阶段的微阵列基因表达时间序列数据集构建基因调控网络的简单方法。该数据来自NCBI网站GEO数据库(由5289个基因和48个样本组成的遗传时间序列数据)。这些微阵列数据集代表了内部遗传网络操作的外部表现(从中心教条来看)。从微阵列数据中发现隐藏的遗传网络是本文的主要目标。由于数据量巨大,这里首先使用k-mean聚类算法将微阵列数据集聚为135个簇。这代表了重要的信息集,其中每个集群被认为包含相似表达水平的基因集。利用图形高斯模型(GGM)构建了遗传网络。因此,开发的网络将有助于检测致病基因集,这将最终导致“药物发现”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mega Programmable Interactive Robotic Surface (AMPIRS) State Estimation using Shifted Legendre Polynomials Fault diagnosis of rolling element bearing using time-domain features and neural networks New Method of Image Compression Using Multiwavelets and Set Partitioning Algorithm A Bandwidth Aware Topology Generation Mechanism for Peer-to-Peer based Publish-Subscribe Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1