Multifractal analysis by the large deviation spectrum to detect osteoporosis

M. Khider, B. Haddad, Abdelmalik Taleb Ahmed
{"title":"Multifractal analysis by the large deviation spectrum to detect osteoporosis","authors":"M. Khider, B. Haddad, Abdelmalik Taleb Ahmed","doi":"10.1109/WOSSPA.2013.6602346","DOIUrl":null,"url":null,"abstract":"This work is based on the use of the theory of large deviations to calculate the grain multifractal spectrum and classify bone micro architecture texture, to do this the multifractal spectrum mode is used, it gives the fractal dimension of the predominant fractal set to detect osteoporosis. In fact, one of the most relevant parameters to differentiate between pathological and normal cases in the trabecular ROI texture is the distance of separation between trabeculae in bone micro architecture. The method we propose here is based on the multifractal analysis of the signal formed by the succession of bone trabecular thickness and trabecular separation obtained from gray level intensities in the trabecular bone texture to classify the two cases of study.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work is based on the use of the theory of large deviations to calculate the grain multifractal spectrum and classify bone micro architecture texture, to do this the multifractal spectrum mode is used, it gives the fractal dimension of the predominant fractal set to detect osteoporosis. In fact, one of the most relevant parameters to differentiate between pathological and normal cases in the trabecular ROI texture is the distance of separation between trabeculae in bone micro architecture. The method we propose here is based on the multifractal analysis of the signal formed by the succession of bone trabecular thickness and trabecular separation obtained from gray level intensities in the trabecular bone texture to classify the two cases of study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重分形分析采用大偏差谱检测骨质疏松症
本工作是利用大偏差理论计算颗粒多重分形谱并对骨微结构纹理进行分类,为此采用多重分形谱模式,给出了优势分形集的分形维数来检测骨质疏松症。事实上,在ROI小梁纹理中,区分病理和正常情况最相关的参数之一就是骨微结构中小梁之间的分离距离。本文提出的方法是基于多重分形分析对骨小梁厚度序列和骨小梁分离序列所形成的信号进行分形分析,并从骨小梁纹理的灰度强度中获得信号,对两种研究案例进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor estimation and visualization using dMRI Effect of multi-users and multipaths on the performance of an adaptive serial acquisition scheme for DS/CDMA systems Relay self interference minimisation using tapped filter New procedure in designing 2D-IIR filters based on 2D-FIR filters approximation Empirical mode decomposition based support vector machines for microemboli classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1