VCI predictors: Voting on classifications from imputed learning sets

Xiaoyuan Su, T. Khoshgoftaar, Xingquan Zhu
{"title":"VCI predictors: Voting on classifications from imputed learning sets","authors":"Xiaoyuan Su, T. Khoshgoftaar, Xingquan Zhu","doi":"10.1109/IRI.2008.4583046","DOIUrl":null,"url":null,"abstract":"We propose VCI (voting on classifications from imputed learning sets) predictors, which generate multiple incomplete learning sets from a complete dataset by randomly deleting values with a small MCAR (missing completely at random) missing ratio, and then apply an imputation technique to fill in the missing values before giving the imputed data to a machine learner. The final prediction of a class is the result of voting on the classifications from the imputed learning sets. Our empirical results show that VCI predictors significantly improve the classification performance on complete data, and perform better than Bagging predictors on binary class data.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose VCI (voting on classifications from imputed learning sets) predictors, which generate multiple incomplete learning sets from a complete dataset by randomly deleting values with a small MCAR (missing completely at random) missing ratio, and then apply an imputation technique to fill in the missing values before giving the imputed data to a machine learner. The final prediction of a class is the result of voting on the classifications from the imputed learning sets. Our empirical results show that VCI predictors significantly improve the classification performance on complete data, and perform better than Bagging predictors on binary class data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VCI预测器:对来自输入学习集的分类进行投票
我们提出了VCI(对来自输入学习集的分类进行投票)预测器,该预测器通过随机删除具有小MCAR(随机完全缺失)缺失率的值,从完整数据集中生成多个不完整学习集,然后在将输入数据提供给机器学习器之前应用imputation技术来填充缺失值。类的最终预测是对来自输入学习集的分类进行投票的结果。我们的实证结果表明,VCI预测器在完全类数据上显著提高了分类性能,并且在二分类数据上优于Bagging预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An unsupervised protein sequences clustering algorithm using functional domain information FACT: A fusion architecture with contract templates for semantic and syntactic integration Data component based management of reservoir simulation models RFID composite event definition and detection Analysis methodology for project design utilizing UML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1