{"title":"Fast Point Cloud Feature Extraction for Real-time SLAM","authors":"Sheng-Wei Lee, Chih-Ming Hsu, Ming-Che Lee, Yuan-Ting Fu, Fetullah Atas, A. Tsai","doi":"10.1109/CACS47674.2019.9024355","DOIUrl":null,"url":null,"abstract":"Automated driving has been developed rapidly in the past five years. Many automakers have popularized SAE Level 2 on self-driving cars, some even on regular vehicles. To implement Level 3 or Level 4, it’s necessary to rely on a good localization system when GPS signal is not available. For this need, this paper proposes two effective methods to increase the accuracy of the real-time SLAM: The first method: When the original point cloud is input, the point cloud is divided into the short-range group, the medium-range group and the long-range group. An adaptive parameter adjustment method is then used to obtain the optimal parameters for each of these point cloud groups. However, Lidar’s physical characteristics can cause the point cloud to be insufficient, making an important part of points misjudged as outliers for the medium-range and long-range cases. Thanks to the help of the adaptive parameters, these point clouds, which were originally misjudged as outliers can be preserved in this paper. The second method: In point clouds, the same object in different ranges is represented with different point clouds. Hence, features, such as the roughness and density, can dramatically change with the variation of distance even when it is the same object. To solve this problem, we have designed three different range point cloud feature extraction methods to get more accurate point cloud features, such as the planes or edges. By combining these two steps, the LeGO-LOAM accuracy can be effectively increased by more than 30% while achieving the performance of the real-time SLAM, which is more accurate and faster than the NDT-Mapping used in Autoware.","PeriodicalId":247039,"journal":{"name":"2019 International Automatic Control Conference (CACS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS47674.2019.9024355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Automated driving has been developed rapidly in the past five years. Many automakers have popularized SAE Level 2 on self-driving cars, some even on regular vehicles. To implement Level 3 or Level 4, it’s necessary to rely on a good localization system when GPS signal is not available. For this need, this paper proposes two effective methods to increase the accuracy of the real-time SLAM: The first method: When the original point cloud is input, the point cloud is divided into the short-range group, the medium-range group and the long-range group. An adaptive parameter adjustment method is then used to obtain the optimal parameters for each of these point cloud groups. However, Lidar’s physical characteristics can cause the point cloud to be insufficient, making an important part of points misjudged as outliers for the medium-range and long-range cases. Thanks to the help of the adaptive parameters, these point clouds, which were originally misjudged as outliers can be preserved in this paper. The second method: In point clouds, the same object in different ranges is represented with different point clouds. Hence, features, such as the roughness and density, can dramatically change with the variation of distance even when it is the same object. To solve this problem, we have designed three different range point cloud feature extraction methods to get more accurate point cloud features, such as the planes or edges. By combining these two steps, the LeGO-LOAM accuracy can be effectively increased by more than 30% while achieving the performance of the real-time SLAM, which is more accurate and faster than the NDT-Mapping used in Autoware.