Exploiting Geometric Restrictions in a PTZ Camera for Finding Point-orrespondences Between Configurations

Birgi Tamersoy, J. Aggarwal
{"title":"Exploiting Geometric Restrictions in a PTZ Camera for Finding Point-orrespondences Between Configurations","authors":"Birgi Tamersoy, J. Aggarwal","doi":"10.1109/AVSS.2010.53","DOIUrl":null,"url":null,"abstract":"A pan-tilt-zoom (PTZ) camera, fixed in location, mayperform only rotational movements. There is a class offeature-based self-calibration approaches that exploit therestrictions on the camera motion in order to obtain accuratepoint-correspondences between two configurations ofa PTZ camera. Most of these approaches require extensivecomputation and yet do not guarantee a satisfactory result.In this paper, we approach this problem from a differentperspective. We exploit the geometric restrictions on the imageplanes, which are imposed by the motion restrictions onthe camera. We present a simple method for estimating thecamera focal length and finding the point-correspondencesbetween two camera configurations. We compute pan-only,tilt-only and zoom-only correspondences and then combinethe three to derive the geometrical relationship between anytwo camera configurations. We perform radial lens distortionestimation in order to calibrate distorted image coordinates.Our purely geometric approach does not require anyintensive computations, feature tracking or training. However,our point-correspondence experiments show that, itstill performs well-enough for most computer vision applicationsof PTZ cameras.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A pan-tilt-zoom (PTZ) camera, fixed in location, mayperform only rotational movements. There is a class offeature-based self-calibration approaches that exploit therestrictions on the camera motion in order to obtain accuratepoint-correspondences between two configurations ofa PTZ camera. Most of these approaches require extensivecomputation and yet do not guarantee a satisfactory result.In this paper, we approach this problem from a differentperspective. We exploit the geometric restrictions on the imageplanes, which are imposed by the motion restrictions onthe camera. We present a simple method for estimating thecamera focal length and finding the point-correspondencesbetween two camera configurations. We compute pan-only,tilt-only and zoom-only correspondences and then combinethe three to derive the geometrical relationship between anytwo camera configurations. We perform radial lens distortionestimation in order to calibrate distorted image coordinates.Our purely geometric approach does not require anyintensive computations, feature tracking or training. However,our point-correspondence experiments show that, itstill performs well-enough for most computer vision applicationsof PTZ cameras.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用PTZ相机的几何限制寻找构型之间的点对应
固定在位置上的平移-倾斜-变焦(PTZ)相机只能进行旋转运动。有一类基于特征的自校准方法,利用相机运动的限制来获得PTZ相机两种配置之间的精确点对应。这些方法大多需要大量的计算,但不能保证令人满意的结果。在本文中,我们从不同的角度来探讨这个问题。我们利用图像平面上的几何限制,这些限制是由相机上的运动限制所施加的。我们提出了一种简单的方法来估计相机焦距和找到两个相机配置之间的点对应。我们计算仅泛,仅倾斜和仅变焦对应,然后将三者结合起来,得出任意两个相机配置之间的几何关系。我们执行径向透镜畸变估计,以校准畸变图像坐标。我们的纯几何方法不需要任何密集的计算、特征跟踪或训练。然而,我们的点对应实验表明,它仍然可以很好地用于PTZ相机的大多数计算机视觉应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1