{"title":"Cognitive Hybrid Satellite-Terrestrial Relay Networks with Simultaneous Energy and Information Transmission","authors":"Vibhum Singh, P. K. Upadhyay","doi":"10.1109/ANTS.2018.8710070","DOIUrl":null,"url":null,"abstract":"In this paper, a cognitive hybrid satellite-terrestrial relay network with power splitting-based energy harvesting (EH) has been proposed. Herein, a primary satellite source coexists with a secondary transmitter-receiver pair on the ground and communicates with its terrestrial user by exploiting both direct and relay links. It is further assumed that secondary transmitter has the radio-frequency-based EH capability and harvests energy from the primary satellite’s signal. Hereby, it explores an opportunity for spectrum access through an amplify-and-forward based relay cooperation with the primary satellite network. We analyze the performance of the primary satellite network and secondary terrestrial network by adopting Shadowed-Rician fading for satellite links and Nakagami-m fading for terrestrial links by deriving their corresponding outage probability expressions. In addition, to get useful insights, expressions for throughput and energy efficiency of primary satellite network are provided assuming a delay-limited scenario. Moreover, our results elucidate the impact of power splitting factor and spectrum sharing factor on the system performance.","PeriodicalId":273443,"journal":{"name":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2018.8710070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, a cognitive hybrid satellite-terrestrial relay network with power splitting-based energy harvesting (EH) has been proposed. Herein, a primary satellite source coexists with a secondary transmitter-receiver pair on the ground and communicates with its terrestrial user by exploiting both direct and relay links. It is further assumed that secondary transmitter has the radio-frequency-based EH capability and harvests energy from the primary satellite’s signal. Hereby, it explores an opportunity for spectrum access through an amplify-and-forward based relay cooperation with the primary satellite network. We analyze the performance of the primary satellite network and secondary terrestrial network by adopting Shadowed-Rician fading for satellite links and Nakagami-m fading for terrestrial links by deriving their corresponding outage probability expressions. In addition, to get useful insights, expressions for throughput and energy efficiency of primary satellite network are provided assuming a delay-limited scenario. Moreover, our results elucidate the impact of power splitting factor and spectrum sharing factor on the system performance.