Andrew Hoblitzell, M. Babbar‐Sebens, S. Mukhopadhyay
{"title":"Uncertainty-Based Deep Learning Networks for Limited Data Wetland User Models","authors":"Andrew Hoblitzell, M. Babbar‐Sebens, S. Mukhopadhyay","doi":"10.1109/AIVR.2018.00011","DOIUrl":null,"url":null,"abstract":"This paper discusses a method for dealing with limited data in deep networks based on calculating the uncertainty associated with remaining training data. The method was developed for the Watershed REstoration using Spatio-Temporal Optimization of REsources (WRESTORE) system, an interactive decision support system designed for performing multi-criteria decision analysis with a distributed system of conservation practices on the Eagle Creek Watershed in Indiana, USA. Our results show faster and more stable convergence when using an uncertainty-based incremental sampling method than when using a standard random incremental sampling method. This work describes the existing WRESTORE system, provides details about the implementation of our uncertainty-based incremental sampling method, and provides a discussion of our results and future work. The primary contribution of the paper is an uncertainty-based incremental sampling method which can be applied to limited data watershed design problems.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper discusses a method for dealing with limited data in deep networks based on calculating the uncertainty associated with remaining training data. The method was developed for the Watershed REstoration using Spatio-Temporal Optimization of REsources (WRESTORE) system, an interactive decision support system designed for performing multi-criteria decision analysis with a distributed system of conservation practices on the Eagle Creek Watershed in Indiana, USA. Our results show faster and more stable convergence when using an uncertainty-based incremental sampling method than when using a standard random incremental sampling method. This work describes the existing WRESTORE system, provides details about the implementation of our uncertainty-based incremental sampling method, and provides a discussion of our results and future work. The primary contribution of the paper is an uncertainty-based incremental sampling method which can be applied to limited data watershed design problems.