Extracting Events from Spatial Time Series

G. Andrienko, N. Andrienko, Martin Mladenov, M. Mock, Christian Pölitz
{"title":"Extracting Events from Spatial Time Series","authors":"G. Andrienko, N. Andrienko, Martin Mladenov, M. Mock, Christian Pölitz","doi":"10.1109/IV.2010.17","DOIUrl":null,"url":null,"abstract":"An important task in exploration of data about phenomena and processes that develop over time is detection of significant changes that happened to the studied phenomenon. Our research is focused on supporting detection of significant changes, called events, in multiple time series of numeric values. We developed a suite of visual analytics techniques that combines interactive visualizations on time-aware displays and maps with statistical event detection methods implemented in R. We demonstrate the utility of our approach using two large data sets.","PeriodicalId":328464,"journal":{"name":"2010 14th International Conference Information Visualisation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 14th International Conference Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

An important task in exploration of data about phenomena and processes that develop over time is detection of significant changes that happened to the studied phenomenon. Our research is focused on supporting detection of significant changes, called events, in multiple time series of numeric values. We developed a suite of visual analytics techniques that combines interactive visualizations on time-aware displays and maps with statistical event detection methods implemented in R. We demonstrate the utility of our approach using two large data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从空间时间序列中提取事件
在探索关于随时间发展的现象和过程的数据时,一项重要任务是检测所研究现象发生的重大变化。我们的研究重点是支持在多个数值时间序列中检测重大变化(称为事件)。我们开发了一套可视化分析技术,将时间感知显示和地图的交互式可视化与r中实现的统计事件检测方法相结合。我们使用两个大型数据集演示了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-automatic Generation of GUIs for RDF Browsing Swedish Road Weather Visualization Visualization of Multi-sensory Meeting Information to Support Awareness Visual Intention in Moving Image Editing and Eye-Tracking Methodology. An Exploratory Study Combining Visual Analytics and Content Based Data Retrieval Technology for Efficient Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1