Classification and statistical learning for detecting of switching time for switched linear systems

Lamaa Sellami, Kamel Abderrahim
{"title":"Classification and statistical learning for detecting of switching time for switched linear systems","authors":"Lamaa Sellami,&nbsp;Kamel Abderrahim","doi":"10.1016/j.jides.2015.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new method for the detection of switching time is proposed for discrete-time linear switched systems, whose switching mechanism is unknown. The switching instant estimation problem consists to predict the mode switching for discrete behavior from a finite set of input–output data. First, the proposed method use a clustering and classification approach define the number of submodels and the data repartition. Then, by the use of statistical learning approach, we define the linear boundary separator of each validity region. Finally, a technique of detection given an explicitly estimation of switching time. A numerical example was reported to evaluate the proposed method.</p></div>","PeriodicalId":100792,"journal":{"name":"Journal of Innovation in Digital Ecosystems","volume":"2 1","pages":"Pages 13-19"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jides.2015.10.002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation in Digital Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352664515000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a new method for the detection of switching time is proposed for discrete-time linear switched systems, whose switching mechanism is unknown. The switching instant estimation problem consists to predict the mode switching for discrete behavior from a finite set of input–output data. First, the proposed method use a clustering and classification approach define the number of submodels and the data repartition. Then, by the use of statistical learning approach, we define the linear boundary separator of each validity region. Finally, a technique of detection given an explicitly estimation of switching time. A numerical example was reported to evaluate the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
切换线性系统切换时间检测的分类与统计学习
针对开关机制未知的离散线性开关系统,提出了一种新的开关时间检测方法。切换瞬间估计问题包括从一组有限的输入输出数据中预测离散行为的模式切换。首先,采用聚类和分类的方法定义子模型的个数和数据的重划分。然后,利用统计学习的方法,定义每个有效区域的线性边界分隔符。最后,给出了一种显式估计开关时间的检测技术。最后通过数值算例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Meaning-based machine learning for information assurance Wavelet decomposition of software entropy reveals symptoms of malicious code Evaluating the descriptive power of Instagram hashtags Occupancy driven building performance assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1