Deep Reinforcement Learning for Smart Queue Management

Hassan Ismail Fawaz, D. Zeghlache, Tran Anh Quang Pham, Jérémie Leguay, P. Medagliani
{"title":"Deep Reinforcement Learning for Smart Queue Management","authors":"Hassan Ismail Fawaz, D. Zeghlache, Tran Anh Quang Pham, Jérémie Leguay, P. Medagliani","doi":"10.14279/TUJ.ECEASST.80.1139","DOIUrl":null,"url":null,"abstract":"With the goal of meeting the stringent throughput and delay requirements of classified network flows, we propose a Deep Q-learning Network (DQN) for optimal weight selection in an active queue management system based on Weighted Fair Queuing (WFQ). Our system schedules flows belonging to different priority classes (Gold, Silver, and Bronze) into separate queues, and learns how and when to dequeue from each queue. The neural network implements deep reinforcement learning tools such as target networks and replay buffers to help learn the best weights depending on the network state. We show, via simulations, that our algorithm converges to an efficient model capable of adapting to the flow demands, producing thus lower delays with respect to traditional WFQ.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/TUJ.ECEASST.80.1139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the goal of meeting the stringent throughput and delay requirements of classified network flows, we propose a Deep Q-learning Network (DQN) for optimal weight selection in an active queue management system based on Weighted Fair Queuing (WFQ). Our system schedules flows belonging to different priority classes (Gold, Silver, and Bronze) into separate queues, and learns how and when to dequeue from each queue. The neural network implements deep reinforcement learning tools such as target networks and replay buffers to help learn the best weights depending on the network state. We show, via simulations, that our algorithm converges to an efficient model capable of adapting to the flow demands, producing thus lower delays with respect to traditional WFQ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能队列管理的深度强化学习
为了满足分类网络流严格的吞吐量和延迟要求,我们提出了一种深度q -学习网络(DQN),用于基于加权公平排队(WFQ)的主动队列管理系统的最优权值选择。我们的系统将属于不同优先级类(Gold、Silver和Bronze)的流调度到单独的队列中,并学习如何以及何时从每个队列中退出队列。神经网络实现了深度强化学习工具,如目标网络和重播缓冲区,以帮助根据网络状态学习最佳权重。我们通过模拟表明,我们的算法收敛到一个有效的模型,能够适应流量需求,因此相对于传统的WFQ产生更低的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Management for Multi-Agent Systems Towards SCION-enabled IXPs: The SCION Peering Coordinator Demonstration: A cloud-control system equipped with intrusion detection and mitigation Demo: Traffic Splitting for Tor - A Defense against Fingerprinting Attacks Preface and Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1