Information Retrieval Model Combining Sentence Level Retrieval

Jiali Zuo, Mingwen Wang, Jianyi Wan, Wenbing Luo
{"title":"Information Retrieval Model Combining Sentence Level Retrieval","authors":"Jiali Zuo, Mingwen Wang, Jianyi Wan, Wenbing Luo","doi":"10.1109/IALP.2013.76","DOIUrl":null,"url":null,"abstract":"To get better performance, Some researchers have proposed relative work to exploit the position and proximity information of query terms in language model. However these models need large quantity of training data and its computation complexity is comparatively high. This paper presents an information retrieval model combining sentence level retrieval and use sentence as a unit to compute the relevant degree of the sentence to query. Experiment results show our model can get better performance than baseline models.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To get better performance, Some researchers have proposed relative work to exploit the position and proximity information of query terms in language model. However these models need large quantity of training data and its computation complexity is comparatively high. This paper presents an information retrieval model combining sentence level retrieval and use sentence as a unit to compute the relevant degree of the sentence to query. Experiment results show our model can get better performance than baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合句子级检索的信息检索模型
为了获得更好的性能,一些研究人员提出了在语言模型中利用查询词的位置和接近度信息的相关工作。但这些模型需要大量的训练数据,且计算复杂度较高。本文提出了一种结合句子级检索和以句子为单位计算句子与查询的关联度的信息检索模型。实验结果表明,该模型的性能优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1