{"title":"Real-world gender recognition using multi-order LBP and localized multi-boost learning","authors":"Dong Cao, R. He, Man Zhang, Zhenan Sun, T. Tan","doi":"10.1109/ISBA.2015.7126350","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world datasets.","PeriodicalId":398910,"journal":{"name":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2015.7126350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world datasets.