Straddle Robot Design and control with a PID controller optimized by PSO algorithms

Y. Zennir, Sami Grief, El-Arkam Mechhoud
{"title":"Straddle Robot Design and control with a PID controller optimized by PSO algorithms","authors":"Y. Zennir, Sami Grief, El-Arkam Mechhoud","doi":"10.51485/AJSS.V5I2.109","DOIUrl":null,"url":null,"abstract":"The work presented in this paper illustrates the design and control of a straddle robot-type four-wheel moving robot with PID controller adjusted by meta-genetic algorithms genetic Algorithm (GA) and PSO. The approach used for the simulation is a modeless approach because it assumes no knowledge of the mathematical model of the system, indeed, the mechanical structure was implemented under SolidWorks, then a simulation (Solidworks, Simulink) has was conducted using particle swarm optimization (PSO) techniques for controller parameter optimization (PID) to control the steering angle and angular velocity of each wheel. The results obtained clearly illustrate the effectiveness of the selected control architecture and the accuracy is better with the use of the PSO algorithm. In a future work, we compare the results with using other optimization algorithms like GA (Genetic Algorithm) and GWO (Grey Wolf Optimizer) algorithm.","PeriodicalId":153848,"journal":{"name":"Algerian Journal of Signals and Systems","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algerian Journal of Signals and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51485/AJSS.V5I2.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The work presented in this paper illustrates the design and control of a straddle robot-type four-wheel moving robot with PID controller adjusted by meta-genetic algorithms genetic Algorithm (GA) and PSO. The approach used for the simulation is a modeless approach because it assumes no knowledge of the mathematical model of the system, indeed, the mechanical structure was implemented under SolidWorks, then a simulation (Solidworks, Simulink) has was conducted using particle swarm optimization (PSO) techniques for controller parameter optimization (PID) to control the steering angle and angular velocity of each wheel. The results obtained clearly illustrate the effectiveness of the selected control architecture and the accuracy is better with the use of the PSO algorithm. In a future work, we compare the results with using other optimization algorithms like GA (Genetic Algorithm) and GWO (Grey Wolf Optimizer) algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法优化的PID控制器的跨界机器人设计与控制
本文介绍了一种采用元遗传算法、遗传算法和粒子群算法对PID控制器进行调整的跨座式四轮移动机器人的设计与控制。仿真采用的方法是一种非模态方法,因为它假设不知道系统的数学模型,实际上,机械结构是在SolidWorks下实现的,然后使用粒子群优化(PSO)技术进行仿真(SolidWorks, Simulink)控制器参数优化(PID)来控制每个车轮的转向角和角速度。实验结果清楚地说明了所选择的控制体系结构的有效性,并且采用粒子群算法的控制精度更高。在未来的工作中,我们将结果与其他优化算法(如GA(遗传算法)和GWO(灰狼优化器)算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Management System in Smart Micro-Grid Impact of Voltage Temperature Coefficient on power prediction of four type silicon photovoltaic module technologies installed in real conditions in the north-central of Algeria PD adaptive controller method for a three-axis stabilized rigid satellite attitude system DFIG Wind Turbine Controlled by Sliding Mode and Fuzzy-Sliding Control Modes Design and simulation of Demodulator Based BELL-202 standard for NanoSatellite Communication Sub-system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1