Building 3D scenes from 2D image sequences

P. Cristea
{"title":"Building 3D scenes from 2D image sequences","authors":"P. Cristea","doi":"10.1117/12.677057","DOIUrl":null,"url":null,"abstract":"Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.","PeriodicalId":266048,"journal":{"name":"International Conference on Holography, Optical Recording, and Processing of Information","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Holography, Optical Recording, and Processing of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.677057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从2D图像序列构建3D场景
由单个移动视频接收器拍摄的2D图像序列可以融合以生成3D表示。这种动态立体视觉存在于鸟类和爬行动物中,而静态双目立体视觉在包括人类在内的哺乳动物中很常见。大多数用于立体图像捕获、传输、处理、存储和检索的多媒体计算机视觉系统都是基于双目视觉的概念。因此,他们的主要目标是获取、保存和增强能够在人类观察者中产生3D视觉感知的2D图像对。鸟类的立体视觉是基于每只眼睛捕获的图像与先前从同一只眼睛获得和记忆的图像的融合。这一过程同时、共同地对两只眼睛进行,并产生了一个几乎完整的全方位视野。因此,基线距离不再是固定的,就像在双目3D视图的情况下一样,而是根据与主要感兴趣对象的距离进行调整,从而实现可控的深度效果。此外,合成的3D场景比序列中的每个单独的2D图像具有更好的分辨率。可以实现对三维场景的压缩,开发对带宽要求较低的立体传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D behaviour of photopolymers as holographic recording material Spectral analysis of shrinkage in holographic materials suitable for optical storage applications Analysis of amplitude and phase coupling in volume holography Replay at optical communications wavelengths of holographic gratings recorded in the visible The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1