Optimal Las Vegas Locality Sensitive Data Structures

Thomas Dybdahl Ahle
{"title":"Optimal Las Vegas Locality Sensitive Data Structures","authors":"Thomas Dybdahl Ahle","doi":"10.1109/FOCS.2017.91","DOIUrl":null,"url":null,"abstract":"We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最佳拉斯维加斯位置敏感数据结构
我们表明,近似相似性(近邻)搜索可以在高维中解决,性能匹配最新的(数据独立的)局部敏感哈希,但保证没有假阴性。具体来说,我们给出了两种常见问题的数据结构。对于Hamming空间中的c-近似近邻,我们得到了与[Indyk and Motwani, 1998]匹配的查询时间dn^{1/c+o(1)}和空间dn^{1+1/c+o(1)},肯定地回答了[Indyk, 2000a]和[Pagh, 2016]中一个长期存在的开放问题。对于(s1, s2)-近似Jaccard相似度,当集合大小相等时,我们得到查询时间d^2n^{ρ+o(1)}和空间d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)],性能与[Pagh and Christiani, 2017]相匹配。我们像在经典的LSH中一样使用空间分区,但是使用蛮力、张紧和分割函数的组合来构建它们à[Naor et al., 1995]。我们还展示了具有单边误差的两个降维引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1