Yasutaka Kamei, Akito Monden, S. Matsumoto, Takeshi Kakimoto, Ken-ichi Matsumoto
{"title":"The Effects of Over and Under Sampling on Fault-prone Module Detection","authors":"Yasutaka Kamei, Akito Monden, S. Matsumoto, Takeshi Kakimoto, Ken-ichi Matsumoto","doi":"10.1109/ESEM.2007.28","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to improve the prediction performance of fault-prone module prediction models (fault-proneness models) by employing over/under sampling methods, which are preprocessing procedures for a fit dataset. The sampling methods are expected to improve prediction performance when the fit dataset is unbalanced, i.e. there exists a large difference between the number of fault-prone modules and not-fault-prone modules. So far, there has been no research reporting the effects of applying sampling methods to fault-proneness models. In this paper, we experimentally evaluated the effects of four sampling methods (random over sampling, synthetic minority over sampling, random under sampling and one-sided selection) applied to four fault-proneness models (linear discriminant analysis, logistic regression analysis, neural network and classification tree) by using two module sets of industry legacy software. All four sampling methods improved the prediction performance of the linear and logistic models, while neural network and classification tree models did not benefit from the sampling methods. The improvements of Fl-values in linear and logistic models were 0.078 at minimum, 0.224 at maximum and 0.121 at the mean.","PeriodicalId":124420,"journal":{"name":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148
Abstract
The goal of this paper is to improve the prediction performance of fault-prone module prediction models (fault-proneness models) by employing over/under sampling methods, which are preprocessing procedures for a fit dataset. The sampling methods are expected to improve prediction performance when the fit dataset is unbalanced, i.e. there exists a large difference between the number of fault-prone modules and not-fault-prone modules. So far, there has been no research reporting the effects of applying sampling methods to fault-proneness models. In this paper, we experimentally evaluated the effects of four sampling methods (random over sampling, synthetic minority over sampling, random under sampling and one-sided selection) applied to four fault-proneness models (linear discriminant analysis, logistic regression analysis, neural network and classification tree) by using two module sets of industry legacy software. All four sampling methods improved the prediction performance of the linear and logistic models, while neural network and classification tree models did not benefit from the sampling methods. The improvements of Fl-values in linear and logistic models were 0.078 at minimum, 0.224 at maximum and 0.121 at the mean.