Robust Active Shape Model using AdaBoosted Histogram Classifiers

Yuanzhong Li, W. Ito
{"title":"Robust Active Shape Model using AdaBoosted Histogram Classifiers","authors":"Yuanzhong Li, W. Ito","doi":"10.1093/ietisy/e89-d.7.2117","DOIUrl":null,"url":null,"abstract":"Active Shape Model (ASM) has been shown to be a powerful tool to aid the interpretation of images, espec ially in fac e alignment. ASM loc al appearanc e model parameter estimation is based on the assumption that residuals between model fit and data hav e a Gaussian distribution. Howev er, in fac e alignment, bec ause of c hanges in illumination, different fac ial ex pressions and obstac les lik e mustac hes and glasses, this assumption may be inac c urate. AdaBoost is widely used in fac e detec tion as a robust c lassific ation method, whic h does not need the Gaussian distribution assumption. I n this paper, we model loc al appearanc es by using AdaBoosted histogram c lassifiers to solv e the robustness problems, whic h hav e prev iously been enc ountered. Ex perimental results demonstrate the robustness of our method to align and loc ate fac ial features.","PeriodicalId":295384,"journal":{"name":"IAPR International Workshop on Machine Vision Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAPR International Workshop on Machine Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ietisy/e89-d.7.2117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Active Shape Model (ASM) has been shown to be a powerful tool to aid the interpretation of images, espec ially in fac e alignment. ASM loc al appearanc e model parameter estimation is based on the assumption that residuals between model fit and data hav e a Gaussian distribution. Howev er, in fac e alignment, bec ause of c hanges in illumination, different fac ial ex pressions and obstac les lik e mustac hes and glasses, this assumption may be inac c urate. AdaBoost is widely used in fac e detec tion as a robust c lassific ation method, whic h does not need the Gaussian distribution assumption. I n this paper, we model loc al appearanc es by using AdaBoosted histogram c lassifiers to solv e the robustness problems, whic h hav e prev iously been enc ountered. Ex perimental results demonstrate the robustness of our method to align and loc ate fac ial features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AdaBoosted直方图分类器的鲁棒主动形状模型
主动形状模型(ASM)已被证明是一个强大的工具,以帮助解释图像,特别是在面部对齐。ASM局部外观模型参数估计是基于模型拟合与数据之间的残差服从高斯分布的假设。然而,在面部对齐中,由于光照的变化,不同的面部表情和障碍物,如胡须和眼镜,这种假设可能不准确。AdaBoost作为一种不需要高斯分布假设的鲁棒分类方法在人脸检测中得到了广泛的应用。在本文中,我们使用AdaBoosted直方图c分类器对局部外观进行建模,以解决以前遇到的鲁棒性问题。实验结果证明了该方法对人脸特征对齐和定位的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep network model based on subspaces: A novel approach for image classification Query-by-Sketch Image Retrieval Using Edge Relation Histogram Static Estimation of the Meteorological Visibility Distance in Night Fog with Imagery Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements Robust Small-Object Detection for Outdoor Wide-Area Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1