Rail and turnout detection using gradient information and template matching

Jorge Corsino Espino, B. Stanciulescu, Philippe Forin
{"title":"Rail and turnout detection using gradient information and template matching","authors":"Jorge Corsino Espino, B. Stanciulescu, Philippe Forin","doi":"10.1109/ICIRT.2013.6696299","DOIUrl":null,"url":null,"abstract":"This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.","PeriodicalId":163655,"journal":{"name":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2013.6696299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用梯度信息和模板匹配进行钢轨和道岔检测
提出了一种不基于经验阈值的轨道道岔检测算法。轨道提取是基于利用滚动垫的宽度进行边缘检测。然后,这个边缘检测方案被用作RANSAC算法的输入,以确定轨道的模型。道岔检测方案基于定向梯度直方图(HOG)和模板匹配(TM)。结果表明:(i)我们的铁路轨道提取方案具有可靠的性能,(ii)使用支持向量机(SVM)分类器的道岔检测方案的正确率为97.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization approach for real-time headway control of railway traffic Design and introduction of high power transfer system for electrical vehicles Feature-based solution to harmonics interference on track circuit in electrified heavy haul railway Research and application of the BFM-STAMP hazard analysis method Railway interlocking process - Building a base for formal methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1