Model-Based Tabular Structure Detection and Recognition in Noisy Handwritten Documents

Jin Chen, D. Lopresti
{"title":"Model-Based Tabular Structure Detection and Recognition in Noisy Handwritten Documents","authors":"Jin Chen, D. Lopresti","doi":"10.1109/ICFHR.2012.233","DOIUrl":null,"url":null,"abstract":"Tabular structure detection and recognition can be a valuable step in the analysis of unstructured documents. The noisy handwritten documents we try to analyze may contain pre-printed rulings as the substrate, hand-drawn rulings, machine-printed text, handwritten text, and signatures, in addition to the tabular structures which we wish to decompose into basic cells, rows, and columns. Although work has been done to machine-printed documents, noisy handwritten documents may require modified and/or new techniques. In this work, we try to detect and decompose tabular structures into 2-D grids of table cells simultaneously. First, we detect \"key points\" that help determine the physical and logical structure of tables. Then, we make use of the 2-D grid assumption to build grids of key points. Finally, we extract structural features for the Min-Cut/Max-Flow algorithm to recognize tabular structures. Experiments on 22 tables which contain 584 table cells show a cell precision of 100% and a cell recall of 93.3%.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Tabular structure detection and recognition can be a valuable step in the analysis of unstructured documents. The noisy handwritten documents we try to analyze may contain pre-printed rulings as the substrate, hand-drawn rulings, machine-printed text, handwritten text, and signatures, in addition to the tabular structures which we wish to decompose into basic cells, rows, and columns. Although work has been done to machine-printed documents, noisy handwritten documents may require modified and/or new techniques. In this work, we try to detect and decompose tabular structures into 2-D grids of table cells simultaneously. First, we detect "key points" that help determine the physical and logical structure of tables. Then, we make use of the 2-D grid assumption to build grids of key points. Finally, we extract structural features for the Min-Cut/Max-Flow algorithm to recognize tabular structures. Experiments on 22 tables which contain 584 table cells show a cell precision of 100% and a cell recall of 93.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的有噪声手写文档表结构检测与识别
表格结构检测和识别在分析非结构化文档时是很有价值的一步。我们试图分析的嘈杂的手写文档可能包含作为基板的预打印规则、手绘规则、机器打印文本、手写文本和签名,以及我们希望分解为基本单元格、行和列的表格结构。虽然已经对机器打印的文档进行了改进,但是嘈杂的手写文档可能需要修改和/或新的技术。在这项工作中,我们试图同时检测并将表格结构分解为表格单元的二维网格。首先,我们检测有助于确定表的物理和逻辑结构的“关键点”。然后,利用二维网格假设建立关键点网格。最后,提取结构特征,用于Min-Cut/Max-Flow算法识别表格结构。在包含584个表单元的22个表上进行的实验表明,该方法的单元精度为100%,单元召回率为93.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Line Features Integration for On-Line Handwriting Graphemes Modeling Improvement Analysis of Different Subspace Mixture Models in Handwriting Recognition Structural Learning for Writer Identification in Offline Handwriting A Study of Handwritten Characters by Shape Descriptors: Doping Using the Freeman Code Dynamic Programming Matching with Global Features for Online Character Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1