Experimental Researches of Biometric Authentication Using Convolutional Neural Networks and Histograms of Oriented Graphs

A. Kuznetsov, Serhii Datsenko, Yuriy Gorbenko, Tetiana Chupilko, M. Korneyev, Victoria Klym
{"title":"Experimental Researches of Biometric Authentication Using Convolutional Neural Networks and Histograms of Oriented Graphs","authors":"A. Kuznetsov, Serhii Datsenko, Yuriy Gorbenko, Tetiana Chupilko, M. Korneyev, Victoria Klym","doi":"10.1109/aict52120.2021.9628932","DOIUrl":null,"url":null,"abstract":"User authentication technologies are an important component of modern cybersecurity. These technologies are designed to verify the correctness and validity, for example, by verifying the authenticity of entered passwords, identifiers, certain biometric features, and so on. We consider biometric authentication techniques for the human face. Two techniques are used to process biometric features in our work: convolutional neural networks and histograms of directed gradients. We conduct experimental research to study these techniques and compare the results of both in terms of authentication accuracy and the speed of processing biometric images. The obtained results will be useful in the development and implementation of cybersecurity applications that use biometric authentication","PeriodicalId":375013,"journal":{"name":"2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aict52120.2021.9628932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

User authentication technologies are an important component of modern cybersecurity. These technologies are designed to verify the correctness and validity, for example, by verifying the authenticity of entered passwords, identifiers, certain biometric features, and so on. We consider biometric authentication techniques for the human face. Two techniques are used to process biometric features in our work: convolutional neural networks and histograms of directed gradients. We conduct experimental research to study these techniques and compare the results of both in terms of authentication accuracy and the speed of processing biometric images. The obtained results will be useful in the development and implementation of cybersecurity applications that use biometric authentication
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络和有向图直方图的生物特征认证实验研究
用户认证技术是现代网络安全的重要组成部分。这些技术旨在验证正确性和有效性,例如,通过验证输入的密码、标识符、某些生物特征等的真实性。我们考虑人脸的生物识别认证技术。在我们的工作中使用了两种技术来处理生物特征:卷积神经网络和有向梯度直方图。我们进行了实验研究来研究这些技术,并比较了两种技术在身份验证精度和处理生物特征图像速度方面的结果。所获得的结果将有助于开发和实施使用生物识别身份验证的网络安全应用程序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mobile Application About Earthquake to be Used Before and After a Disaster Method of Semantic Coding of Speech Signals based on Empirical Wavelet Transform Mechanisms of Fine Tuning of Neuroevolutionary Synthesis of Artificial Neural Networks Informational Technologies in Film Production - How ICT shaping Media Industry Development of Adaptive Coding Means, Decoding of Data in Real Time Using Barker-Like Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1