MODEL REGRESI LINIER BAYESIAN DENGAN APLIKASI PADA DATA PENUNDAAN PENERBANGAN

V. N. Lestari, Subanar Subanar
{"title":"MODEL REGRESI LINIER BAYESIAN DENGAN APLIKASI PADA DATA PENUNDAAN PENERBANGAN","authors":"V. N. Lestari, Subanar Subanar","doi":"10.14710/JFMA.V1I2.21","DOIUrl":null,"url":null,"abstract":"Bayesian linear regression is an approach to linear regression where statistical analysis depend of Bayesian inference. The Bayesian model on big data uses a summary of data statistics as input; Statistical summary can be calculated from each subset, then a statistical summary of the full dataset is obtained from the sum of the summary statistics for each subset. Recent developments in data science and research, produce large datasets that are too large to be analyzed as a whole due to the limitations of computer memory or storage capacity. To overcome this, a program package was introduced from R namely BayesSummaryStatLM for the Bayesian linear regression model with the Markov Chain Monte Carlo implementation that overcomes this limitation. Then the program package from R, ff is used to read data in large datasets while calculating statistics summary. In this study Bayesian linear regression model used with several choices of prior distribution for unknown model parameters, and illustrates in simulation data and real datasets for flight delay data in US 2008. The application of simulation data and flight delay data produces a plot of density functions for the β parameters has a shape resembling a plot of Normal distribution density function, whereas for plot  parameters the density function has a shape resembling the plot of Inverse Gamma distribution density function. In the simulation data, the estimator for each parameter produced has a value that approach to the value of the specified parameter (True Value). This is also indicated by the narrow credible interval for each parameters.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JFMA.V1I2.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian linear regression is an approach to linear regression where statistical analysis depend of Bayesian inference. The Bayesian model on big data uses a summary of data statistics as input; Statistical summary can be calculated from each subset, then a statistical summary of the full dataset is obtained from the sum of the summary statistics for each subset. Recent developments in data science and research, produce large datasets that are too large to be analyzed as a whole due to the limitations of computer memory or storage capacity. To overcome this, a program package was introduced from R namely BayesSummaryStatLM for the Bayesian linear regression model with the Markov Chain Monte Carlo implementation that overcomes this limitation. Then the program package from R, ff is used to read data in large datasets while calculating statistics summary. In this study Bayesian linear regression model used with several choices of prior distribution for unknown model parameters, and illustrates in simulation data and real datasets for flight delay data in US 2008. The application of simulation data and flight delay data produces a plot of density functions for the β parameters has a shape resembling a plot of Normal distribution density function, whereas for plot  parameters the density function has a shape resembling the plot of Inverse Gamma distribution density function. In the simulation data, the estimator for each parameter produced has a value that approach to the value of the specified parameter (True Value). This is also indicated by the narrow credible interval for each parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯线性回归是一种统计分析依赖于贝叶斯推理的线性回归方法。大数据贝叶斯模型使用数据统计汇总作为输入;可以从每个子集计算统计汇总,然后从每个子集的汇总统计量求和得到完整数据集的统计汇总。由于计算机内存或存储容量的限制,数据科学和研究的最新发展产生了大型数据集,这些数据集太大而无法作为一个整体进行分析。为了克服这一点,从R中引入了一个程序包,即BayesSummaryStatLM,用于贝叶斯线性回归模型,具有克服这一限制的马尔可夫链蒙特卡罗实现。然后使用R, ff中的程序包读取大数据集中的数据,同时计算统计汇总。本研究采用贝叶斯线性回归模型,对未知模型参数选择先验分布,并在模拟数据和真实数据集中对美国2008年航班延误数据进行了说明。模拟数据和航班延误数据的应用产生了β参数的密度函数图,其形状类似于正态分布密度函数图,而对于图参数,密度函数的形状类似于反伽玛分布密度函数图。在模拟数据中,产生的每个参数的估计器都有一个接近指定参数值(真值)的值。每个参数的可信区间都很窄,也说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BACKTRACKING APPROACH FOR SOLVING PATH PUZZLES MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT FROZEN INITIAL LIABILITY METHOD TO DETERMINE NORMAL COST OF PENSION FUND WITH VASICEK INTEREST RATE MODEL TOPOLOGY OF QUASI-PSEUDOMETRIC SPACES AND CONTINUOUS LINEAR OPERATOR ON ASYMMETRIC NORMED SPACES FLOWER POLLINATION ALGORITHM (FPA): COMPARING SWITCH PROBABILITY BETWEEN CONSTANT 0.8 AND DOUBLE EXPONENTGUNAKAN DOUBLE EXPONENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1