New trends in acceleration and parallelization techniques

M. Araújo, D. M. Solís, J. Rodríguez, Luis Landesa Porras, F. O. Basteiro, José Manuel Taboada Varela
{"title":"New trends in acceleration and parallelization techniques","authors":"M. Araújo, D. M. Solís, J. Rodríguez, Luis Landesa Porras, F. O. Basteiro, José Manuel Taboada Varela","doi":"10.1049/sbew533e_ch11","DOIUrl":null,"url":null,"abstract":"Rigorous solutions of large-scale radiation and scattering problems are permanently present among the goals of the scientific community dedicated to computational electromagnetics. Research aimed at solving complex electromagnetic problems that can involve large numbers of unknowns plays a relevant role in the development of many real-life applications. In this context, the fast multipole method (FMM) and the multilevel fast multipole algorithm (MLFMA) have been extensively used for accelerating iterative solutions of dense matrix systems resulting from the application of the method of moments (MoM) to problems formulated with surface integral equations (SIEs). The purpose of using these acceleration techniques is to extend the applicability of MoM, whose matrix storage requirement is O(N2 ), while the number of operations is O(N3 ) for direct solutions or O(N2 ) for iterative solutions, to larger problems. FMM and MLFMA reduce computational costs to O(N1.5 ) and 0(N log N), respectively.","PeriodicalId":287175,"journal":{"name":"New Trends in Computational Electromagnetics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Trends in Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbew533e_ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rigorous solutions of large-scale radiation and scattering problems are permanently present among the goals of the scientific community dedicated to computational electromagnetics. Research aimed at solving complex electromagnetic problems that can involve large numbers of unknowns plays a relevant role in the development of many real-life applications. In this context, the fast multipole method (FMM) and the multilevel fast multipole algorithm (MLFMA) have been extensively used for accelerating iterative solutions of dense matrix systems resulting from the application of the method of moments (MoM) to problems formulated with surface integral equations (SIEs). The purpose of using these acceleration techniques is to extend the applicability of MoM, whose matrix storage requirement is O(N2 ), while the number of operations is O(N3 ) for direct solutions or O(N2 ) for iterative solutions, to larger problems. FMM and MLFMA reduce computational costs to O(N1.5 ) and 0(N log N), respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速和并行化技术的新趋势
大规模辐射和散射问题的严格解决方案一直是致力于计算电磁学的科学界的目标之一。旨在解决涉及大量未知的复杂电磁问题的研究在许多实际应用的发展中起着相关的作用。在这种背景下,快速多极方法(FMM)和多层快速多极算法(MLFMA)被广泛用于加速密集矩阵系统的迭代解,这是由于矩量法(MoM)应用于用曲面积分方程(si)表述的问题而产生的。使用这些加速技术的目的是将MoM的适用性扩展到更大的问题,MoM的矩阵存储需求为O(N2),而直接解的操作次数为O(N3),迭代解的操作次数为O(N2)。FMM和MLFMA的计算成本分别降低到0(N1.5)和0(N log N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back Matter New trends in geometric modeling and discretization for integral equations New trends in algebraic preconditioning New trends in uncertainty quantification for large-scale electromagnetic analysis: from tensor product cubature rules to spectral quantic tensor-train approximation New trends in frequency-domain volume integral equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1