Fast registration of articulated objects from depth images

Sourabh Prajapati, P J Narayanan
{"title":"Fast registration of articulated objects from depth images","authors":"Sourabh Prajapati, P J Narayanan","doi":"10.1109/NCVPRIPG.2013.6776168","DOIUrl":null,"url":null,"abstract":"We present an approach for fast registration of a Global Articulated 3D Model to RGBD data from Kinect. Our approach uses geometry based matching of rigid parts of the articulated objects in depth images. The registration is performed in a parametric space of transformations independently for each segment. The time for registering each frame with the global model is reduced greatly using this method. We experimented the algorithm with different articulated object datasets and obtained significantly low execution time as compared to ICP algorithm when applied on each rigid part of the articulated object.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present an approach for fast registration of a Global Articulated 3D Model to RGBD data from Kinect. Our approach uses geometry based matching of rigid parts of the articulated objects in depth images. The registration is performed in a parametric space of transformations independently for each segment. The time for registering each frame with the global model is reduced greatly using this method. We experimented the algorithm with different articulated object datasets and obtained significantly low execution time as compared to ICP algorithm when applied on each rigid part of the articulated object.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度图像中铰接物体的快速配准
我们提出了一种从Kinect快速注册全局铰接3D模型到RGBD数据的方法。我们的方法使用基于几何的匹配深度图像中铰接物体的刚性部分。该配准是在一个独立的变换参数空间中进行的。该方法大大减少了每帧与全局模型的配准时间。我们在不同的铰接对象数据集上实验了该算法,当应用于铰接对象的每个刚性部分时,与ICP算法相比,该算法的执行时间明显较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1