FPGA Implementation of Artificial Neural Network (ANN) for ECG Signal Classification

Shatharajupally Vinaykumar, T. R
{"title":"FPGA Implementation of Artificial Neural Network (ANN) for ECG Signal Classification","authors":"Shatharajupally Vinaykumar, T. R","doi":"10.1109/iemtronics55184.2022.9795755","DOIUrl":null,"url":null,"abstract":"The heart is one of the crucial parts of the human being. The graphical recording of the cardiac cycle produced by an Electrocardiograph is called an Electrocardiogram (ECG) signal. To predict the occurrence of an arrhythmia, an electrocardiogram (ECG) is generally used by doctors to identify the condition of the patient. Hence, to accurately detect the abnormalities of the heart in advance and classify those diseases without human involvement many machine learning algorithms are used. The MIT-BIH Arrhythmia database is being used to classify the beat classification performance. This paper presents the hardware implementation of a classifier using an Artificial Neural Network (ANN) to classify four abnormalities (Normal beat, Supraventricular ectopic beat, Ventricular ectopic beat, Fusion beat) of heartbeat with high accuracy. To an appropriate input vector for the classifier, several preprocessing stages have been applied. Discrete Wavelet Transform (DWT) is used to extract the features from the ECG signal. To implement this work, Xilinx Artix-7 NESYS 4 DDR FPGA board is used. This model got 86% testing accuracy in simulation and 85.6% in hardware.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The heart is one of the crucial parts of the human being. The graphical recording of the cardiac cycle produced by an Electrocardiograph is called an Electrocardiogram (ECG) signal. To predict the occurrence of an arrhythmia, an electrocardiogram (ECG) is generally used by doctors to identify the condition of the patient. Hence, to accurately detect the abnormalities of the heart in advance and classify those diseases without human involvement many machine learning algorithms are used. The MIT-BIH Arrhythmia database is being used to classify the beat classification performance. This paper presents the hardware implementation of a classifier using an Artificial Neural Network (ANN) to classify four abnormalities (Normal beat, Supraventricular ectopic beat, Ventricular ectopic beat, Fusion beat) of heartbeat with high accuracy. To an appropriate input vector for the classifier, several preprocessing stages have been applied. Discrete Wavelet Transform (DWT) is used to extract the features from the ECG signal. To implement this work, Xilinx Artix-7 NESYS 4 DDR FPGA board is used. This model got 86% testing accuracy in simulation and 85.6% in hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心电信号分类的人工神经网络FPGA实现
心脏是人类最重要的部分之一。由心电图仪产生的心电周期的图形记录称为心电图信号。为了预测心律失常的发生,医生通常使用心电图(ECG)来确定患者的状况。因此,为了提前准确检测心脏异常并在没有人类参与的情况下对这些疾病进行分类,使用了许多机器学习算法。MIT-BIH心律失常数据库被用于对心跳分类性能进行分类。本文介绍了一种基于人工神经网络(ANN)的分类器的硬件实现,该分类器对心跳的四种异常(正常心跳、室上异位心跳、室外异位心跳、融合心跳)进行了高精度的分类。为了得到一个合适的分类器输入向量,应用了几个预处理阶段。采用离散小波变换(DWT)对心电信号进行特征提取。为了实现这项工作,使用了Xilinx Artix-7 NESYS 4 DDR FPGA板。该模型的仿真测试精度为86%,硬件测试精度为85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Reflecting Surfaces in UAV-Assisted 6G Networks: An Approach for Enhanced Propagation and Spectral Characteristics Bimetals (Au-Pd, Au-Pt) loaded WO3 hybridized graphene oxide FET sensors for selective detection of acetone Using UML to Describe the Development of Software Products Using an Object Approach A Machine Learning Approach for the Early Detection of Dementia VLSI Implementation of a Real-time Modified Decision-based Algorithm for Impulse Noise Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1