Nearest neighbor queries on extensible grid files using dimensionality reduction

Ryosuke Miyoshi, T. Miura, I. Shioya
{"title":"Nearest neighbor queries on extensible grid files using dimensionality reduction","authors":"Ryosuke Miyoshi, T. Miura, I. Shioya","doi":"10.1109/COMPSAC.2005.111","DOIUrl":null,"url":null,"abstract":"Nowadays there have several applications on spatial information which manage high dimensional data. Whenever we examine nearest neighbor search in these applications by multi-dimensional indexing structure, very often we must access all pages if dimensionality exceeds about 10. This is known as curse of dimensionality that says any indexing structure is outperformed by simple linear search. In this investigation, for high dimensional data, we propose a sophisticated access mechanism based on extensible grid files with dimensionality reduction (DR) technique. We analyze error estimation caused by DR and recover the search space on original dimension. We examine nearest neighbor search and discuss some empirical results to show the usefulness of our approach.","PeriodicalId":419267,"journal":{"name":"29th Annual International Computer Software and Applications Conference (COMPSAC'05)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Annual International Computer Software and Applications Conference (COMPSAC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2005.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays there have several applications on spatial information which manage high dimensional data. Whenever we examine nearest neighbor search in these applications by multi-dimensional indexing structure, very often we must access all pages if dimensionality exceeds about 10. This is known as curse of dimensionality that says any indexing structure is outperformed by simple linear search. In this investigation, for high dimensional data, we propose a sophisticated access mechanism based on extensible grid files with dimensionality reduction (DR) technique. We analyze error estimation caused by DR and recover the search space on original dimension. We examine nearest neighbor search and discuss some empirical results to show the usefulness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用降维对可扩展网格文件进行最近邻查询
目前,在空间信息方面已经出现了几种对高维数据进行管理的应用。当我们通过多维索引结构检查这些应用程序中的最近邻搜索时,如果维度超过10,我们通常必须访问所有页面。这就是所谓的维数诅咒,即任何索引结构的性能都优于简单的线性搜索。本研究针对高维数据,提出了一种基于可扩展网格文件和降维(DR)技术的复杂访问机制。我们分析了DR引起的误差估计,并在原始维度上恢复搜索空间。我们研究了最近邻搜索,并讨论了一些实证结果,以显示我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A formal approach to designing a class-subclass structure using a partial-order on the functions Partition testing with dynamic partitioning Testing coverage analysis for software component validation Tridirectional computed chaining: an efficient hashing algorithm for limited space applications Considerations on a new software architecture for distributed environments using autonomous semantic agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1