Sparse Domain Adaptation in Projection Spaces Based on Good Similarity Functions

Emilie Morvant, Amaury Habrard, S. Ayache
{"title":"Sparse Domain Adaptation in Projection Spaces Based on Good Similarity Functions","authors":"Emilie Morvant, Amaury Habrard, S. Ayache","doi":"10.1109/ICDM.2011.136","DOIUrl":null,"url":null,"abstract":"We address the problem of domain adaptation for binary classification which arises when the distributions generating the source learning data and target test data are somewhat different. We consider the challenging case where no target labeled data is available. From a theoretical standpoint, a classifier has better generalization guarantees when the two domain marginal distributions are close. We study a new direction based on a recent framework of Balcan et al. allowing to learn linear classifiers in an explicit projection space based on similarity functions that may be not symmetric and not positive semi-definite. We propose a general method for learning a good classifier on target data with generalization guarantees and we improve its efficiency thanks to an iterative procedure by reweighting the similarity function - compatible with Balcan et al. framework - to move closer the two distributions in a new projection space. Hyper parameters and reweighting quality are controlled by a reverse validation procedure. Our approach is based on a linear programming formulation and shows good adaptation performances with very sparse models. We evaluate it on a synthetic problem and on real image annotation task.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We address the problem of domain adaptation for binary classification which arises when the distributions generating the source learning data and target test data are somewhat different. We consider the challenging case where no target labeled data is available. From a theoretical standpoint, a classifier has better generalization guarantees when the two domain marginal distributions are close. We study a new direction based on a recent framework of Balcan et al. allowing to learn linear classifiers in an explicit projection space based on similarity functions that may be not symmetric and not positive semi-definite. We propose a general method for learning a good classifier on target data with generalization guarantees and we improve its efficiency thanks to an iterative procedure by reweighting the similarity function - compatible with Balcan et al. framework - to move closer the two distributions in a new projection space. Hyper parameters and reweighting quality are controlled by a reverse validation procedure. Our approach is based on a linear programming formulation and shows good adaptation performances with very sparse models. We evaluate it on a synthetic problem and on real image annotation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于良好相似函数的投影空间稀疏域自适应
针对源学习数据和目标测试数据的分布存在一定差异的情况,提出了二值分类的域自适应问题。我们考虑没有目标标记数据可用的具有挑战性的情况。从理论的角度来看,当两个域边缘分布接近时,分类器具有更好的泛化保证。我们基于Balcan等人最近的框架研究了一个新的方向,允许在基于非对称和非正半确定的相似函数的显式投影空间中学习线性分类器。我们提出了一种通用的方法,在具有泛化保证的目标数据上学习一个好的分类器,并通过重新加权相似函数(与Balcan等人的框架兼容)的迭代过程来提高其效率,从而在新的投影空间中更接近两个分布。通过逆向验证程序控制超参数和重加权质量。该方法基于线性规划公式,对非常稀疏的模型具有良好的自适应性能。在一个综合问题和一个真实图像标注任务上对其进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1