{"title":"Towards algorithmic typing for DOT (short paper)","authors":"A. Nieto","doi":"10.1145/3136000.3136003","DOIUrl":null,"url":null,"abstract":"The Dependent Object Types (DOT) calculus formalizes key features of Scala. The D<: calculus is the core of DOT. To date, presentations of D<: have used declarative, as opposed to algorithmic, typing and subtyping rules. Unfortunately, algorithmic typing for full D<: is known to be an undecidable problem. We explore the design space for a restricted version of D<: that has decidable typechecking. Even in this simplified D<:, algorithmic typing and subtyping are tricky, due to the \"bad bounds\" problem. The Scala compiler bypasses bad bounds at the cost of a loss in expressiveness in its type system. Based on the approach taken in the Scala compiler, we present the Step Typing and Step Subtyping relations for D<:. These relations are sound and decidable. They are not complete with respect to the original D<: typing rules.","PeriodicalId":158126,"journal":{"name":"Proceedings of the 8th ACM SIGPLAN International Symposium on Scala","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGPLAN International Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136000.3136003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The Dependent Object Types (DOT) calculus formalizes key features of Scala. The D<: calculus is the core of DOT. To date, presentations of D<: have used declarative, as opposed to algorithmic, typing and subtyping rules. Unfortunately, algorithmic typing for full D<: is known to be an undecidable problem. We explore the design space for a restricted version of D<: that has decidable typechecking. Even in this simplified D<:, algorithmic typing and subtyping are tricky, due to the "bad bounds" problem. The Scala compiler bypasses bad bounds at the cost of a loss in expressiveness in its type system. Based on the approach taken in the Scala compiler, we present the Step Typing and Step Subtyping relations for D<:. These relations are sound and decidable. They are not complete with respect to the original D<: typing rules.