Exploratory novelty identification in human activity data streams

A. Pozdnoukhov, F. Walsh
{"title":"Exploratory novelty identification in human activity data streams","authors":"A. Pozdnoukhov, F. Walsh","doi":"10.1145/1878500.1878512","DOIUrl":null,"url":null,"abstract":"Heterogeneous human-generated data streams are the measurands which provide opportunities to identify patterns, detect novelties and explore evolution of complex social systems. Communication technologies with their very high penetration into society can serve as particularly rich sources of information. However, for a variety of observable communication channels one has little or no access to the content of human-to-human communications, while the data streams on the intensities of such events are more common. The paper presents a framework of methods useful for exploratory analysis and visualization of such data streams. Particularly, we demonstrate how untypical activity levels can be identified by fitting a non-homogeneous Markov-modulated Poisson process and spatialising the component corresponding to unusual bursts/lulls of activity via heat maps. This approach is illustrated with a case study devoted to the analysis of geo-referenced data streams of instant messaging activity on the internet.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878500.1878512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Heterogeneous human-generated data streams are the measurands which provide opportunities to identify patterns, detect novelties and explore evolution of complex social systems. Communication technologies with their very high penetration into society can serve as particularly rich sources of information. However, for a variety of observable communication channels one has little or no access to the content of human-to-human communications, while the data streams on the intensities of such events are more common. The paper presents a framework of methods useful for exploratory analysis and visualization of such data streams. Particularly, we demonstrate how untypical activity levels can be identified by fitting a non-homogeneous Markov-modulated Poisson process and spatialising the component corresponding to unusual bursts/lulls of activity via heat maps. This approach is illustrated with a case study devoted to the analysis of geo-referenced data streams of instant messaging activity on the internet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类活动数据流中的探索性新颖性识别
异质的人工生成数据流为识别模式、检测新颖性和探索复杂社会系统的演变提供了机会。通讯技术对社会的渗透程度很高,可以作为特别丰富的信息来源。然而,对于各种可观察的通信渠道,人们很少或根本无法访问人与人之间通信的内容,而有关此类事件强度的数据流则更为常见。本文提出了一种有助于对此类数据流进行探索性分析和可视化的方法框架。特别是,我们展示了如何通过拟合非均匀马尔可夫调制泊松过程并通过热图将与异常活动爆发/间歇相对应的组件空间化来识别非典型活动水平。通过一个案例研究来说明这种方法,该案例研究致力于分析互联网上即时消息活动的地理参考数据流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1