Ionospheric storm forecasting technique by artificial neural network

M. Milosavljevic, L. Cander, S. Tomaśevič
{"title":"Ionospheric storm forecasting technique by artificial neural network","authors":"M. Milosavljevic, L. Cander, S. Tomaśevič","doi":"10.1109/NEUREL.2002.1057972","DOIUrl":null,"url":null,"abstract":"In this work we further refine and improve the neural network based foF2 predictor, which is actually a neural autoregressive model with additional input signals (NNARX). Our analysis is focused on choice of X parts of NNARX model in order to capture middle and long term dependencies. Daily distribution of prediction error suggests need for structural changes of the neural network model, as well as adaptation of running average lengths used for determination of X inputs. Generalisation properties of proposed neural predictor are improved by carefully designed pruning procedure with additional regularisation term in criterion function.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work we further refine and improve the neural network based foF2 predictor, which is actually a neural autoregressive model with additional input signals (NNARX). Our analysis is focused on choice of X parts of NNARX model in order to capture middle and long term dependencies. Daily distribution of prediction error suggests need for structural changes of the neural network model, as well as adaptation of running average lengths used for determination of X inputs. Generalisation properties of proposed neural predictor are improved by carefully designed pruning procedure with additional regularisation term in criterion function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电离层风暴人工神经网络预报技术
在这项工作中,我们进一步完善和改进了基于神经网络的foF2预测器,它实际上是一个带有附加输入信号的神经自回归模型(NNARX)。我们的分析集中在NNARX模型的X部分的选择上,以获取中期和长期依赖关系。预测误差的日分布表明,需要对神经网络模型进行结构改变,并适应用于确定X输入的运行平均长度。通过精心设计剪枝过程,在准则函数中加入正则化项,提高了神经预测器的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The neural compensator for advance vehicle controller Effect of magnetic stimulation of pineal complex of the brain on Na,K-ATPase in experimental Alzheimer's disease Foundations of predictive data mining Application of cellular neural networks in stress analysis of prismatic bars subjected to torsion Neural network models based on small data sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1