Conditional mixture models for precipitation data quality control

Tadesse Zemicheal, Thomas G. Dietterich
{"title":"Conditional mixture models for precipitation data quality control","authors":"Tadesse Zemicheal, Thomas G. Dietterich","doi":"10.1145/3378393.3403823","DOIUrl":null,"url":null,"abstract":"Rainfall is a very important weather variable, especially for agriculture. Unfortunately, rain gauges fail frequently. This paper describes a conditional mixture model for predicting the presence and amount of rain at a weather station based on measurements at nearby stations. The model is evaluated on simulated faults (blocked rain gauges) inserted into observations from the Oklahoma Mesonet. Using the negative log-likelihood as an anomaly score, we evaluate the area under the ROC and precision-recall curves for detecting these faults. The results show very good performance.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3403823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rainfall is a very important weather variable, especially for agriculture. Unfortunately, rain gauges fail frequently. This paper describes a conditional mixture model for predicting the presence and amount of rain at a weather station based on measurements at nearby stations. The model is evaluated on simulated faults (blocked rain gauges) inserted into observations from the Oklahoma Mesonet. Using the negative log-likelihood as an anomaly score, we evaluate the area under the ROC and precision-recall curves for detecting these faults. The results show very good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于降水数据质量控制的条件混合模型
降雨是一个非常重要的天气变量,尤其是对农业而言。不幸的是,雨量计经常失灵。本文描述了一个基于附近气象站测量数据的条件混合模型,用于预测气象站的降雨情况和雨量。该模型在俄克拉何马Mesonet观测中插入模拟断层(阻塞雨量计)进行评估。使用负对数似然作为异常评分,我们评估了检测这些故障的ROC和精度召回率曲线下的面积。结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Features from Online Forums to Meet Social Needs of Breast Cancer Patients ICTs as Enablers of Resilient Social Capital for Ethnic Peace Persuasive information campaign to save water in Universities: An option for water-stressed areas? The "opaque panopticon": Why publishing data online doesn't make the State transparent? The case of India's livelihood program Competitive Cities: Establishing a Classification Model using Data Science-related Jobs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1