{"title":"On the compound impact of opportunistic scheduling and D2D communications in cellular networks","authors":"A. Asadi, V. Mancuso","doi":"10.1145/2507924.2507929","DOIUrl":null,"url":null,"abstract":"Opportunistic scheduling was initially proposed to exploit user channel diversity for network capacity enhancement. However, the achievable gain of opportunistic schedulers is generally restrained due to fairness considerations which impose a tradeoff between fairness and throughput. In this paper, we show via analysis and numerical simulations that opportunistic scheduling not only increases network throughput dramatically, but also increases energy efficiency and can be fair to the users when they cooperate, in particular by using D2D communications. We propose to leverage smartphone's dual-radio interface capabilities to form clusters among mobile users. We design simple, scalable and energy-efficient D2D-assisted opportunistic strategies, which would incentivize mobile users to form clusters. We use a coalitional game theory approach to analyze the cluster formation mechanism, and show that proportional fair-based intra-cluster payoff distribution brings significant incentive to all mobile users regardless of their channel quality.","PeriodicalId":445138,"journal":{"name":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2507924.2507929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
Opportunistic scheduling was initially proposed to exploit user channel diversity for network capacity enhancement. However, the achievable gain of opportunistic schedulers is generally restrained due to fairness considerations which impose a tradeoff between fairness and throughput. In this paper, we show via analysis and numerical simulations that opportunistic scheduling not only increases network throughput dramatically, but also increases energy efficiency and can be fair to the users when they cooperate, in particular by using D2D communications. We propose to leverage smartphone's dual-radio interface capabilities to form clusters among mobile users. We design simple, scalable and energy-efficient D2D-assisted opportunistic strategies, which would incentivize mobile users to form clusters. We use a coalitional game theory approach to analyze the cluster formation mechanism, and show that proportional fair-based intra-cluster payoff distribution brings significant incentive to all mobile users regardless of their channel quality.