Tweet-Inspired Intelligent Subselection of Semantically-Related Lyrical Training Data

Dylan Lasher, P. Bodily
{"title":"Tweet-Inspired Intelligent Subselection of Semantically-Related Lyrical Training Data","authors":"Dylan Lasher, P. Bodily","doi":"10.1109/IETC47856.2020.9249149","DOIUrl":null,"url":null,"abstract":"A current challenge in AI research is enabling AI systems to be inspired by external sources. We present a method for subselecting portions of a training corpus based on relevance to an external inspiring source. Our system takes an external, text-based inspiring source (e.g., tweet), extracts weighted lexical topics contained in the inspiring source, and uses these weighted topics to rank training instances in a corpus of song lyrics according to their relevance to the inspiring source. The system extends on the capabilities of the Empath framework by automatically generating domain-specific categories and mapping functions. The system offers a novel approach toward improved lexical semantic analyses for comparative corpus ranking.","PeriodicalId":186446,"journal":{"name":"2020 Intermountain Engineering, Technology and Computing (IETC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IETC47856.2020.9249149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A current challenge in AI research is enabling AI systems to be inspired by external sources. We present a method for subselecting portions of a training corpus based on relevance to an external inspiring source. Our system takes an external, text-based inspiring source (e.g., tweet), extracts weighted lexical topics contained in the inspiring source, and uses these weighted topics to rank training instances in a corpus of song lyrics according to their relevance to the inspiring source. The system extends on the capabilities of the Empath framework by automatically generating domain-specific categories and mapping functions. The system offers a novel approach toward improved lexical semantic analyses for comparative corpus ranking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义相关抒情训练数据的微博启发智能子选择
人工智能研究目前面临的一个挑战是使人工智能系统能够从外部资源中获得灵感。我们提出了一种基于与外部激励源的相关性来选择训练语料库部分的方法。我们的系统采用一个外部的、基于文本的激励源(例如,tweet),提取激励源中包含的加权词汇主题,并使用这些加权主题根据与激励源的相关性对歌词语料库中的训练实例进行排名。系统通过自动生成特定领域的分类和映射功能扩展了Empath框架的功能。该系统为词法语义分析的改进提供了一种新的比较语料库排序方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Reality Training in Electric Utility Sector - An Underground Application Study Case Different assignments as different contexts: predictors across assignments and outcome measures in CS1 2020 Intermountain Engineering, Technology and Computing (IETC) Micromachining of Silicon Carbide using Wire Electrical Discharge Machining Stereophonic Frequency Modulation using MATLAB: An Undergraduate Research Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1