{"title":"Entropy-Based Graph Clustering: Application to Biological and Social Networks","authors":"Edward Casey Kenley, Young-Rae Cho","doi":"10.1109/ICDM.2011.64","DOIUrl":null,"url":null,"abstract":"Complex systems have been widely studied to characterize their structural behaviors from a topological perspective. High modularity is one of the recurrent features of real-world complex systems. Various graph clustering algorithms have been applied to identifying communities in social networks or modules in biological networks. However, their applicability to real-world systems has been limited because of the massive scale and complex connectivity of the networks. In this study, we exploit a novel information-theoretic model for graph clustering. The entropy-based clustering approach finds locally optimal clusters by growing a random seed in a manner that minimizes graph entropy. We design and analyze modifications that further improve its performance. Assigning priority in seed-selection and seed-growth is well applicable to the scale-free networks characterized by the hub-oriented structure. Computing seed-growth in parallel streams also decomposes an extremely large network efficiently. The experimental results with real biological and social networks show that the entropy-based approach has better performance than competing methods in terms of accuracy and efficiency.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Complex systems have been widely studied to characterize their structural behaviors from a topological perspective. High modularity is one of the recurrent features of real-world complex systems. Various graph clustering algorithms have been applied to identifying communities in social networks or modules in biological networks. However, their applicability to real-world systems has been limited because of the massive scale and complex connectivity of the networks. In this study, we exploit a novel information-theoretic model for graph clustering. The entropy-based clustering approach finds locally optimal clusters by growing a random seed in a manner that minimizes graph entropy. We design and analyze modifications that further improve its performance. Assigning priority in seed-selection and seed-growth is well applicable to the scale-free networks characterized by the hub-oriented structure. Computing seed-growth in parallel streams also decomposes an extremely large network efficiently. The experimental results with real biological and social networks show that the entropy-based approach has better performance than competing methods in terms of accuracy and efficiency.