FPGA-based Features Extraction Sensor for Lettuce Crop

Maverick Jonas G. Adonis, R. Forteza, A. Ramos, A. Alvarez, M. T. D. Leon, J. Hizon, Maria Patricia Rouelli Sabino-Santos, Christopher G. Santos, M. Rosales
{"title":"FPGA-based Features Extraction Sensor for Lettuce Crop","authors":"Maverick Jonas G. Adonis, R. Forteza, A. Ramos, A. Alvarez, M. T. D. Leon, J. Hizon, Maria Patricia Rouelli Sabino-Santos, Christopher G. Santos, M. Rosales","doi":"10.1109/TENCON50793.2020.9293777","DOIUrl":null,"url":null,"abstract":"A method for extracting lettuce phenotypic features using an ARTY A7-35T FPGA platform is proposed. Image acquisition is done by interfacing an OV7670 CMOS camera with FPGA and saving image data on DDR3 memory. The image processing techniques firstly involve color model conversion for saturation enhancement. Then, binarization is done as an initial step in background discrimination, using a threshold value on the green channel of image. To construct a solid figure for foreground, morphological transformations are implemented. Then, pixel count of foreground white pixels are used as an argument in the computation of lettuce canopy area. The FPGA implementation consumes 85.89% of total LUTs resources of the chosen FPGA board with errors as low as 1.28% on the computed canopy area value compared with a MATLAB benchmark. Power consumption reached up to 1.73W, with a total calculated latency of 596.51 ms from image acquisition to canopy area value.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for extracting lettuce phenotypic features using an ARTY A7-35T FPGA platform is proposed. Image acquisition is done by interfacing an OV7670 CMOS camera with FPGA and saving image data on DDR3 memory. The image processing techniques firstly involve color model conversion for saturation enhancement. Then, binarization is done as an initial step in background discrimination, using a threshold value on the green channel of image. To construct a solid figure for foreground, morphological transformations are implemented. Then, pixel count of foreground white pixels are used as an argument in the computation of lettuce canopy area. The FPGA implementation consumes 85.89% of total LUTs resources of the chosen FPGA board with errors as low as 1.28% on the computed canopy area value compared with a MATLAB benchmark. Power consumption reached up to 1.73W, with a total calculated latency of 596.51 ms from image acquisition to canopy area value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga的生菜特征提取传感器
提出了一种基于ARTY A7-35T FPGA平台的生菜表型特征提取方法。图像采集是通过将OV7670 CMOS相机与FPGA连接,并将图像数据保存在DDR3存储器上完成的。图像处理技术首先涉及色彩模型转换以增强饱和度。然后,在图像的绿色通道上使用阈值,将二值化作为背景识别的初始步骤。为了构建前景的实体图形,实现了形态学变换。然后,将前景白色像素的像素数作为莴苣冠层面积计算的参数。FPGA实现消耗了所选FPGA板总LUTs资源的85.89%,与MATLAB基准测试相比,计算的冠层面积值误差低至1.28%。功耗高达1.73W,从图像采集到冠层面积值的总计算延迟为596.51 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1