A. Torres, M. Santos, S. Balula, J. Fortunato, H. Fernandes
{"title":"Turning the internet of (my) things into a remote controlled laboratory","authors":"A. Torres, M. Santos, S. Balula, J. Fortunato, H. Fernandes","doi":"10.1109/REV.2016.7444505","DOIUrl":null,"url":null,"abstract":"In this paper we use a locally developed adaptive watering system as an example of a remote controlled laboratory (RCL) developed with standard open hardware and using libraries taken from the e-lab. This experiment is a particular case that could benefit from a large number of RCLs proposing different water budget strategies, allowing the studies of the best controller algorithm to save water. The water consumption log can be monitored in real-time and served to any user as a distributed remote laboratory with support of a Raspberry PI and a web connection, using an open source Arduino board and custom made shield. The ultimate goal of RCLs will be achieved when anyone can easily publish their own experiment in the WWW.","PeriodicalId":251236,"journal":{"name":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REV.2016.7444505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper we use a locally developed adaptive watering system as an example of a remote controlled laboratory (RCL) developed with standard open hardware and using libraries taken from the e-lab. This experiment is a particular case that could benefit from a large number of RCLs proposing different water budget strategies, allowing the studies of the best controller algorithm to save water. The water consumption log can be monitored in real-time and served to any user as a distributed remote laboratory with support of a Raspberry PI and a web connection, using an open source Arduino board and custom made shield. The ultimate goal of RCLs will be achieved when anyone can easily publish their own experiment in the WWW.