Zamlog: a parallel algorithm for fault simulation based on Zambezi

M. Amin, B. Vinnakota
{"title":"Zamlog: a parallel algorithm for fault simulation based on Zambezi","authors":"M. Amin, B. Vinnakota","doi":"10.1109/ICCAD.1996.569903","DOIUrl":null,"url":null,"abstract":"We present a new multiprocessor sequential circuit fault simulator, Zamlog, based on a novel uniprocessor simulator, Zambezi. Both the fault and test sets are partitioned for multiprocessor simulation. The parallelization technique, designed to preserve the efficiency of Zambezi, is simple to implement and has low communication requirements. Experimental results indicate that Zamlog can obtain speedups of up to 95. The speedups obtained and the scalability are between 3 and 10 times better than any reported in the literature. Furthermore, the speed-ups obtained are with respect to a uniprocessor algorithm which is superior, by an average of 40%, to those used to gauge the speed-ups of previous parallel systems.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Computer Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1996.569903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a new multiprocessor sequential circuit fault simulator, Zamlog, based on a novel uniprocessor simulator, Zambezi. Both the fault and test sets are partitioned for multiprocessor simulation. The parallelization technique, designed to preserve the efficiency of Zambezi, is simple to implement and has low communication requirements. Experimental results indicate that Zamlog can obtain speedups of up to 95. The speedups obtained and the scalability are between 3 and 10 times better than any reported in the literature. Furthermore, the speed-ups obtained are with respect to a uniprocessor algorithm which is superior, by an average of 40%, to those used to gauge the speed-ups of previous parallel systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zamlog:一种基于赞比西河的并行故障模拟算法
在新型单处理机模拟器Zambezi的基础上,提出了一种新的多处理机时序电路故障模拟器Zamlog。对故障集和测试集进行了分区,用于多处理器仿真。并行化技术是为了保持赞比西河的效率而设计的,实现简单,通信要求低。实验结果表明,Zamlog可以获得高达95的加速。所获得的加速和可伸缩性比文献中报道的要好3到10倍。此外,所获得的加速是相对于单处理器算法而言的,它比那些用于衡量以前并行系统加速的算法平均高出40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation and sensitivity analysis of transmission line circuits by the characteristics method An algorithm for synthesis of system-level interface circuits Optimal non-uniform wire-sizing under the Elmore delay model An iterative area/performance trade-off algorithm for LUT-based FPGA technology mapping Design of robust test criteria in analog testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1