An Extended Approach for the Automatic Solution of Tangram Puzzles Using Permutation Heuristics

Fernanda Miyuki Yamada, Hiroki Takahashi, H. C. Batagelo, João Paulo Gois
{"title":"An Extended Approach for the Automatic Solution of Tangram Puzzles Using Permutation Heuristics","authors":"Fernanda Miyuki Yamada, Hiroki Takahashi, H. C. Batagelo, João Paulo Gois","doi":"10.1109/NicoInt50878.2020.00016","DOIUrl":null,"url":null,"abstract":"The Tangram is a geometric puzzle composed of seven polygonal pieces that can be combined to form different patterns. In combinatorial optimization, the task of solving Tangram puzzles is known to be NP-hard. In this paper, we present an extension of a recent computational method for the automatic solution of Tangram puzzles. The original work considers the largest-first heuristic, in which the pieces are positioned inside the puzzle region following a sequence from the largest to the smallest in area size. We present three additional permutation heuristics that generate different sequences to guide the pieces positioning inside the puzzle region. The effectiveness of the proposed heuristics is indicated by the application of the extended method on the solution of different Tangram puzzles. Combining the executed experiments, the extended method solved 93.33% of the patterns included in a dataset in an average time of 53.0s, while the original implementation solved 86.67% of the same dataset in an average time of 51.4s.","PeriodicalId":230190,"journal":{"name":"2020 Nicograph International (NicoInt)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt50878.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Tangram is a geometric puzzle composed of seven polygonal pieces that can be combined to form different patterns. In combinatorial optimization, the task of solving Tangram puzzles is known to be NP-hard. In this paper, we present an extension of a recent computational method for the automatic solution of Tangram puzzles. The original work considers the largest-first heuristic, in which the pieces are positioned inside the puzzle region following a sequence from the largest to the smallest in area size. We present three additional permutation heuristics that generate different sequences to guide the pieces positioning inside the puzzle region. The effectiveness of the proposed heuristics is indicated by the application of the extended method on the solution of different Tangram puzzles. Combining the executed experiments, the extended method solved 93.33% of the patterns included in a dataset in an average time of 53.0s, while the original implementation solved 86.67% of the same dataset in an average time of 51.4s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用排列启发式自动解七巧板的扩展方法
七巧板是由七个多边形组成的几何拼图,可以组合成不同的图案。在组合优化中,解决七巧板拼图的任务是np困难的。在本文中,我们提出了一个新的计算方法的扩展,用于自动解决七巧板难题。最初的工作考虑了最大优先启发式,其中的碎片被放置在拼图区域内,按照面积大小从最大到最小的顺序。我们提出了三个额外的排列启发式,产生不同的序列,以指导拼图区域内的碎片定位。将扩展方法应用于不同七巧板难题的求解,验证了启发式算法的有效性。结合已执行的实验,扩展方法在平均53.5 s的时间内解决了93.33%的数据集中包含的模式,而原始实现在平均51.4s的时间内解决了86.67%的数据集中包含的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manifold Learning for Hand Drawn Sketches NicoInt 2020 Opinion A Cloud Experiment for Virtual Reality and Augmented Reality in NCHC Render Farm Image Based 3D Posture Matching in Real Time for Stone Tool Assembly NicoInt 2020 Commentary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1