Arrakis

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, A. Krishnamurthy, T. Anderson, Timothy Roscoe
{"title":"Arrakis","authors":"Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, A. Krishnamurthy, T. Anderson, Timothy Roscoe","doi":"10.1145/2812806","DOIUrl":null,"url":null,"abstract":"Recent device hardware trends enable a new approach to the design of network server operating systems. In a traditional operating system, the kernel mediates access to device hardware by server applications to enforce process isolation as well as network and disk security. We have designed and implemented a new operating system, Arrakis, that splits the traditional role of the kernel in two. Applications have direct access to virtualized I/O devices, allowing most I/O operations to skip the kernel entirely, while the kernel is re-engineered to provide network and disk protection without kernel mediation of every operation. We describe the hardware and software changes needed to take advantage of this new abstraction, and we illustrate its power by showing improvements of 2 to 5 × in latency and 9 × throughput for a popular persistent NoSQL store relative to a well-tuned Linux implementation.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2812806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Recent device hardware trends enable a new approach to the design of network server operating systems. In a traditional operating system, the kernel mediates access to device hardware by server applications to enforce process isolation as well as network and disk security. We have designed and implemented a new operating system, Arrakis, that splits the traditional role of the kernel in two. Applications have direct access to virtualized I/O devices, allowing most I/O operations to skip the kernel entirely, while the kernel is re-engineered to provide network and disk protection without kernel mediation of every operation. We describe the hardware and software changes needed to take advantage of this new abstraction, and we illustrate its power by showing improvements of 2 to 5 × in latency and 9 × throughput for a popular persistent NoSQL store relative to a well-tuned Linux implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最近的设备硬件趋势为网络服务器操作系统的设计提供了一种新的方法。在传统的操作系统中,内核协调服务器应用程序对设备硬件的访问,以加强进程隔离以及网络和磁盘安全性。我们设计并实现了一个新的操作系统Arrakis,它将内核的传统角色一分为二。应用程序可以直接访问虚拟I/O设备,允许大多数I/O操作完全跳过内核,而内核经过重新设计以提供网络和磁盘保护,而无需内核中介每个操作。我们描述了利用这种新抽象所需的硬件和软件更改,并通过展示与调优的Linux实现相比,流行的持久NoSQL存储的延迟提高了2到5倍,吞吐量提高了9倍来说明它的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Inter-process Communication with Architectural Support H-Container: Enabling Heterogeneous-ISA Container Migration in Edge Computing ROME: All Overlays Lead to Aggregation, but Some Are Faster than Others The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Mission Time and Energy Efficiency An OpenMP Runtime for Transparent Work Sharing across Cache-Incoherent Heterogeneous Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1