Modular dynamic RBF neural network for face recognition

S. I. Ch'ng, K. Seng, L. Ang
{"title":"Modular dynamic RBF neural network for face recognition","authors":"S. I. Ch'ng, K. Seng, L. Ang","doi":"10.1109/ICOS.2012.6417629","DOIUrl":null,"url":null,"abstract":"Over the years, we have seen an increase in the use of RBF neural networks for the task of face recognition. However, the use of second order algorithms as the learning algorithm for all the adjustable parameters in such networks are rare due to the high computational complexity of the calculation of the Jacobian and Hessian matrix. Hence, in this paper, we propose a modular structural training architecture to adapt the Levenberg-Marquardt based RBF neural network for the application of face recognition. In addition to the proposal of the modular structural training architecture, we have also investigated the use of different front-end processors to reduce the dimension size of the feature vectors prior to its application to the LM-based RBF neural network. The investigative study was done on three standard face databases; ORL, Yale and AR databases.","PeriodicalId":319770,"journal":{"name":"2012 IEEE Conference on Open Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Open Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOS.2012.6417629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Over the years, we have seen an increase in the use of RBF neural networks for the task of face recognition. However, the use of second order algorithms as the learning algorithm for all the adjustable parameters in such networks are rare due to the high computational complexity of the calculation of the Jacobian and Hessian matrix. Hence, in this paper, we propose a modular structural training architecture to adapt the Levenberg-Marquardt based RBF neural network for the application of face recognition. In addition to the proposal of the modular structural training architecture, we have also investigated the use of different front-end processors to reduce the dimension size of the feature vectors prior to its application to the LM-based RBF neural network. The investigative study was done on three standard face databases; ORL, Yale and AR databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向人脸识别的模块化动态RBF神经网络
多年来,我们看到RBF神经网络在人脸识别任务中的使用有所增加。然而,由于雅可比矩阵和Hessian矩阵的计算复杂度较高,在此类网络中很少使用二阶算法作为所有可调参数的学习算法。因此,在本文中,我们提出了一种模块化结构的训练架构,以适应基于Levenberg-Marquardt的RBF神经网络在人脸识别中的应用。除了提出模块化结构训练架构外,我们还研究了在将特征向量应用于基于lm的RBF神经网络之前,使用不同的前端处理器来降低特征向量的维度大小。调查研究是在三个标准的人脸数据库上进行的;ORL,耶鲁和AR数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An encrypted trust-based routing protocol Variability of optical properties for atmospheric aerosol in Kuching city using AERONET Sunphotometer Long term latitudinal variation of minimum Outgoing Longwave Radiation over South East Asia Congestion and latency in symmetric interconnection topology All-pass digital system design using second-order cone programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1