A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms

Akanksha Kapoor, Abhishek Singhal
{"title":"A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms","authors":"Akanksha Kapoor, Abhishek Singhal","doi":"10.1109/CIACT.2017.7977272","DOIUrl":null,"url":null,"abstract":"Clustering is essentially a procedure of grouping a set of objects in such a manner that items within the same clusters are more akin to each other compared with those data point or objects in different amassments or clusters. This paper discusses partition-predicated clustering techniques, such as K-Means, K-Means++ and object predicated Fuzzy C-Means clustering algorithm. This paper proposes a method for getting better clustering results by application of sorted and unsorted data into the algorithms. Elapsed time & total number of iterations are the factors on which, the behavioral patterns are analyzed. The experimental results shows that passing the sorted data instead of unsorted data not only effects the time complexity but withal ameliorates performance of these clustering techniques.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Clustering is essentially a procedure of grouping a set of objects in such a manner that items within the same clusters are more akin to each other compared with those data point or objects in different amassments or clusters. This paper discusses partition-predicated clustering techniques, such as K-Means, K-Means++ and object predicated Fuzzy C-Means clustering algorithm. This paper proposes a method for getting better clustering results by application of sorted and unsorted data into the algorithms. Elapsed time & total number of iterations are the factors on which, the behavioral patterns are analyzed. The experimental results shows that passing the sorted data instead of unsorted data not only effects the time complexity but withal ameliorates performance of these clustering techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-Means、k - means++和模糊C-Means聚类算法的比较研究
聚类本质上是一个对一组对象进行分组的过程,在这种方式下,同一集群中的项目与不同集群或集群中的数据点或对象相比,彼此之间更相似。本文讨论了划分预测聚类技术,如K-Means、k - means++和对象预测模糊C-Means聚类算法。本文提出了一种将排序和未排序数据应用到算法中的方法,以获得更好的聚类结果。运行时间和总迭代次数是分析行为模式的因素。实验结果表明,传递排序数据而不是传递未排序数据不仅影响了时间复杂度,而且改善了聚类技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart solar tracking system for optimal power generation SVM with Gaussian kernel-based image spam detection on textual features Comparison between LDA & NMF for event-detection from large text stream data Research on the wisdom education platform of cloud computing architecture Robust TS fuzzy controller for helicopter via parallel distributed compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1