Ambient Intelligence based monitoring and energy efficiency optimisation system

J. Heilala, K. Klobut, T. Salonen, Pekka Siltanen, Reino Ruusu, L. Urosevic, P. Reimer, A. Armijo, M. Sorli, Tomaz Fatur, Ziga Gantar, Andreas Jung
{"title":"Ambient Intelligence based monitoring and energy efficiency optimisation system","authors":"J. Heilala, K. Klobut, T. Salonen, Pekka Siltanen, Reino Ruusu, L. Urosevic, P. Reimer, A. Armijo, M. Sorli, Tomaz Fatur, Ziga Gantar, Andreas Jung","doi":"10.1109/ISAM.2011.5942349","DOIUrl":null,"url":null,"abstract":"The European research project AmI-MoSES is focused on developing energy efficiency enhancement service solutions for SME manufacturing companies. The planned service concept is based on Industrial Ambient Intelligence (AmI) Reference Architecture and Energy Key Performance Indicators in the form of Energy Use Parameters (EUP). EUP indicators are based on monitored energy consumption data (ECD), other measured data and related energy use context data showing in detail how energy was used. AmI-MoSES project focuses on enabling manufacturing SMEs to efficiently and promptly (online) acquire/provide information/knowledge needed for optimisation of energy consumption. It also aims to assist in effective use of such knowledge to support decisions regarding Life-Cycle oriented Energy Use Management, applying the energy efficiency services. This paper provides theoretical background to RTD practitioners who would like to apply AmI-MoSES approaches in future energy efficiency optimisation activities. The topics comprise Energy Consumption Data (ECD) and Ambient Intelligence (AmI) Monitoring, Energy Use Parameters (EUP) Monitoring and Advisory and context modelling for turning EUPs into knowledge assets.","PeriodicalId":273573,"journal":{"name":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2011.5942349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The European research project AmI-MoSES is focused on developing energy efficiency enhancement service solutions for SME manufacturing companies. The planned service concept is based on Industrial Ambient Intelligence (AmI) Reference Architecture and Energy Key Performance Indicators in the form of Energy Use Parameters (EUP). EUP indicators are based on monitored energy consumption data (ECD), other measured data and related energy use context data showing in detail how energy was used. AmI-MoSES project focuses on enabling manufacturing SMEs to efficiently and promptly (online) acquire/provide information/knowledge needed for optimisation of energy consumption. It also aims to assist in effective use of such knowledge to support decisions regarding Life-Cycle oriented Energy Use Management, applying the energy efficiency services. This paper provides theoretical background to RTD practitioners who would like to apply AmI-MoSES approaches in future energy efficiency optimisation activities. The topics comprise Energy Consumption Data (ECD) and Ambient Intelligence (AmI) Monitoring, Energy Use Parameters (EUP) Monitoring and Advisory and context modelling for turning EUPs into knowledge assets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环境智能的监测和能源效率优化系统
欧洲研究项目AmI-MoSES专注于为中小企业制造企业开发能源效率提高服务解决方案。规划的服务理念基于工业环境智能(AmI)参考架构和能源使用参数(EUP)形式的能源关键绩效指标。EUP指标基于监测的能源消耗数据(ECD)、其他测量数据和相关的能源使用背景数据,这些数据详细显示了能源的使用情况。AmI-MoSES项目的重点是使制造业中小企业能够有效和及时地(在线)获取/提供优化能源消耗所需的信息/知识。它还旨在协助有效利用这些知识,以支持有关面向生命周期的能源使用管理的决策,应用能源效率服务。本文为希望在未来能源效率优化活动中应用AmI-MoSES方法的RTD实践者提供了理论背景。主题包括能源消耗数据(ECD)和环境智能(AmI)监测,能源使用参数(EUP)监测和咨询以及将EUP转化为知识资产的上下文建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance sampling based on adaptive principal component analysis View-based programming with reinforcement learning for robotic manipulation An error compensation method for multi-axis machining based on the actual contour measurement A dual side electroluminescence measurement system for LED wafer manufacturing Safety of collaborative industrial robots: Certification possibilities for a collaborative assembly robot concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1